There have been some problems with the writing program this morning, so there is not a recording of my lecture at the black board. So let me summarize here the contents of today's lecture

$P \Rightarrow Q$

- " P implies Q "
means
-"if P is true ${ }^{\text {then }}$ "
" Q if $P "$ ". " P is sofficich for Q
- " P only if $Q "$ " Q is necesony for P "
$P=$ it is riving
Q : the streets Q are wet
- $P \Rightarrow Q$
- P is orficul condition for Q
$-Q$ is a necessary condition for P

Remarks: $P \Rightarrow Q$ does not mean that $Q \Rightarrow P$. (Streets cm be wet for
red sous shat than riving)

Indeed, if non P wore fable, then P is true $\Rightarrow Q$ is truk

$-A \nLeftarrow B$
-A if the same an dy Q
is the the
At is a necessary
aud rufficent condition for (B)

- A is equivalent to B

Example
A poligon has 3 edges
A poligan has 3 angles
SETS.
A set is a collection of object which are called elements.
A is d set. $a \in A$ means $\begin{aligned} & a \in \text { is evenest }\end{aligned}$
$A=\left\{\begin{array}{l}\text { poligons }\} \text { a belongs to } A\end{array}\right.$
$\in A$
$\in A \cdots$ to $^{\text {A } A \text { doesn't belay }}$ O is not cn
B is and, A is abel dement of A.
$B \subseteq A$ ' B is incifotived in A
every elentunt $b \in \mathbb{B}$ is $y_{s o}$ an elownent of A.
$B=\{$ people from Tonzunid $\}$
$A=\{$ people from Africa $\}$
$B \subseteq A$
E, F are subsets of A
$E \cap F "$ intersection of E oud $F "$
＂the set of elements which
are both in E and in F ．
$\mathbb{N}=\{$ usturd mimers $\}=\{0,1,2,3, \ldots .$.
$E=\{n \in \mathbb{N}$ such that there expat $m \in \mathbb{N}\}$
$F=\left\{n \in \mathbb{N}\right.$ sit． $\begin{array}{rl} \\ i=3 & m\end{array}$
$E \cap F=\left\{\begin{array}{c}n \in \mathbb{N} \text { which have both } \\ 2 \text { and } 3 \text { as factors }\end{array}\right\}$ ．

$$
=\{0,6,12,18 \ldots \ldots\}
$$

$E, F_{E} \in \mathcal{A}{ }^{A}=\{c \in A . c \in E$ or $c \in F\}$
E and F are as above

$$
\text { EUR }=\{0,2,3,4,6,8,9,10 \ldots\}
$$

Remark：䐜 or B mems
1）${ }^{2}$ ）B is true but B is wat
2）B is true bat d is wot
$3)$ of and B ore both true
instead either of or（B）mems
only 1）ar e）can occur．

$$
\backslash E \backslash F=\left\{c \quad \text { sot. } c \in \frac{\bar{F}}{c \notin}\right\}
$$

Remark $E \cap F=F \cap E$

$$
E U F=F U E
$$

$$
E \backslash F \neq F \backslash E
$$

ϕ ，denotes the＂empty oct＂
i．e．ϕ the set with no elements
$E=\{$ even natural umber $\} \backslash\{0\}$

$$
O= \begin{cases}\{\text { odd } & " \quad "\} \backslash\{O\}\end{cases}
$$

"Function" $f: A \longrightarrow B$
where
A is a set, celled the
Domaińn
B is ast, callod the CODOMAin ($\left.\begin{array}{l}\text { dloo } \\ \text { RAGEE }\end{array}\right)$
f is the rulle that
"for every $-\forall a \in A \quad f(a) \in B$ $a \longmapsto f(0)$ "f. maps a into f (a)
$f(a)$ is called" the image of a trough $f(a)$

$$
\begin{aligned}
& f: \mathbb{N} \longrightarrow \mathbb{N} \\
& n \longmapsto f(n)=2 n \\
& g: \mathbb{N} \longrightarrow \mathbb{Q}=\left\{\text { frectious } \frac{r}{s}\right\} \\
& n \longmapsto f(n)=\frac{n^{3}+2 n}{n-2} i n \neq 2! \\
& f: \mathbb{N} \backslash\{2\} \xrightarrow{\longrightarrow} \mathbb{Q} \\
& n \longmapsto f(n)=\frac{n^{2}+2 n}{n-2}
\end{aligned}
$$

Defivition: A function $f: A \rightarrow B$

$$
\begin{aligned}
& \text { is soid injective if } \forall a_{1}, \alpha_{2}<A \\
& a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right) \\
& \text { Examples: } \mathbb{Z}=\{\text { integer mumbers }\} \\
& \left\{\begin{array}{l}
\text { notw ral nimbers } \\
\infty>t \text { th a sign }+\infty
\end{array}\right\} \\
& =\{0,-1,1,-2,2,-33 \ldots .\} \\
& f: \mathbb{Z} \longrightarrow \mathbb{N} \text { is } \longrightarrow f(n)=n^{2} \text { injective? }
\end{aligned}
$$

No:

$$
\begin{aligned}
& n_{1}=-3 \quad n_{2}=3 \\
& f\left(n_{1}\right)=(-3)^{2}=9 \\
& f\left(n_{0}\right)=(3)^{3}=9
\end{aligned}
$$

Definition: A function

$$
\begin{aligned}
& f: A \xrightarrow[B]{\rightarrow} \\
& \text { is soid surjective if } \\
& \forall b \in B \quad \exists \text { a } A \quad b=f(a)
\end{aligned}
$$

No: for exauple $B \in \mathbb{N}$ is not the image of amp $n \in \mathbb{N}$: indeed $f(n)=n^{2}=8$. has no solutions in the edoumain \mathbb{Z}
1). Let us abseare that f is suxj jetive
$\underbrace{\text { and only if }}_{\text {if }} f(A)=\left\{\begin{array}{l}\left.f^{\prime \prime}(A), a \in A\right\}\end{array}\right.$
$(\text { In general, } f(A) \subseteq B)^{B}$.
2) Frou dny function $f: A \longrightarrow B$ B can construct $g: A \longrightarrow \widetilde{B}=f(A)$

exept thist is the tave a sowher codomei

$$
\begin{aligned}
& f: \mathbb{Z} \longrightarrow \mathbb{n}^{2} \\
& \tilde{B}=f(\mathbb{Z})=\{0,1,4,9,16,25, \ldots \ldots\} \\
& g: \underset{B}{\mathbb{B}} \longrightarrow \\
& \text { is surjective } f(n)=f(n)=n^{c}
\end{aligned}
$$

is surjective

$$
h: \mathbb{Z}_{n_{1}} \longrightarrow \mathbb{R}
$$

$$
h\left(n_{1}\right)=n_{1}^{3}=n_{n}^{n_{2}^{3}}=f\left(n_{2}\right)
$$

$n_{1}=n_{2} \quad h$ is injiective
h is not surjective, but if we undify the codounin

$$
k: \mathbb{Z} \longrightarrow\{0, \pm 1, \pm 8, \pm 27, \ldots\}
$$

k is (injective and) surjective

