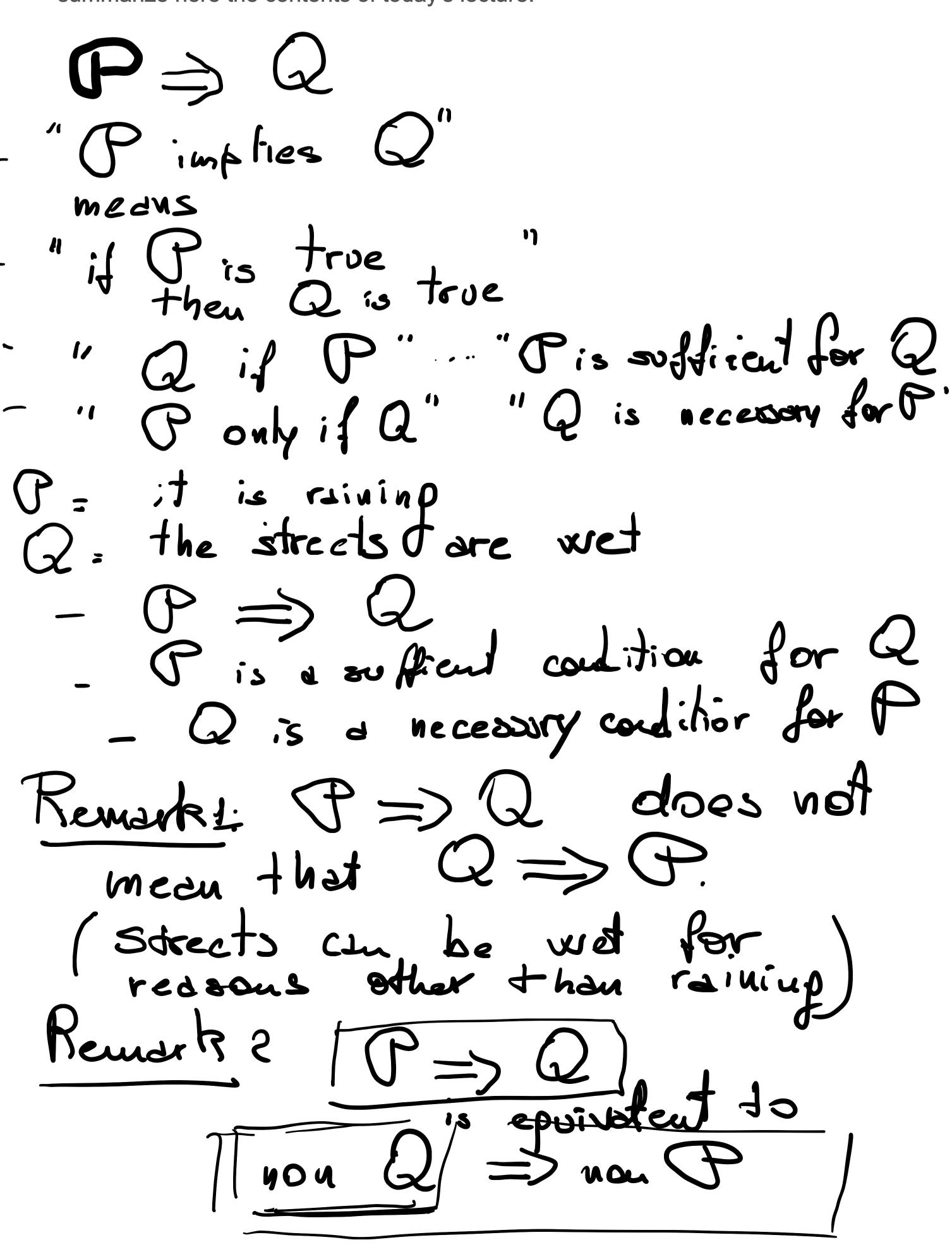
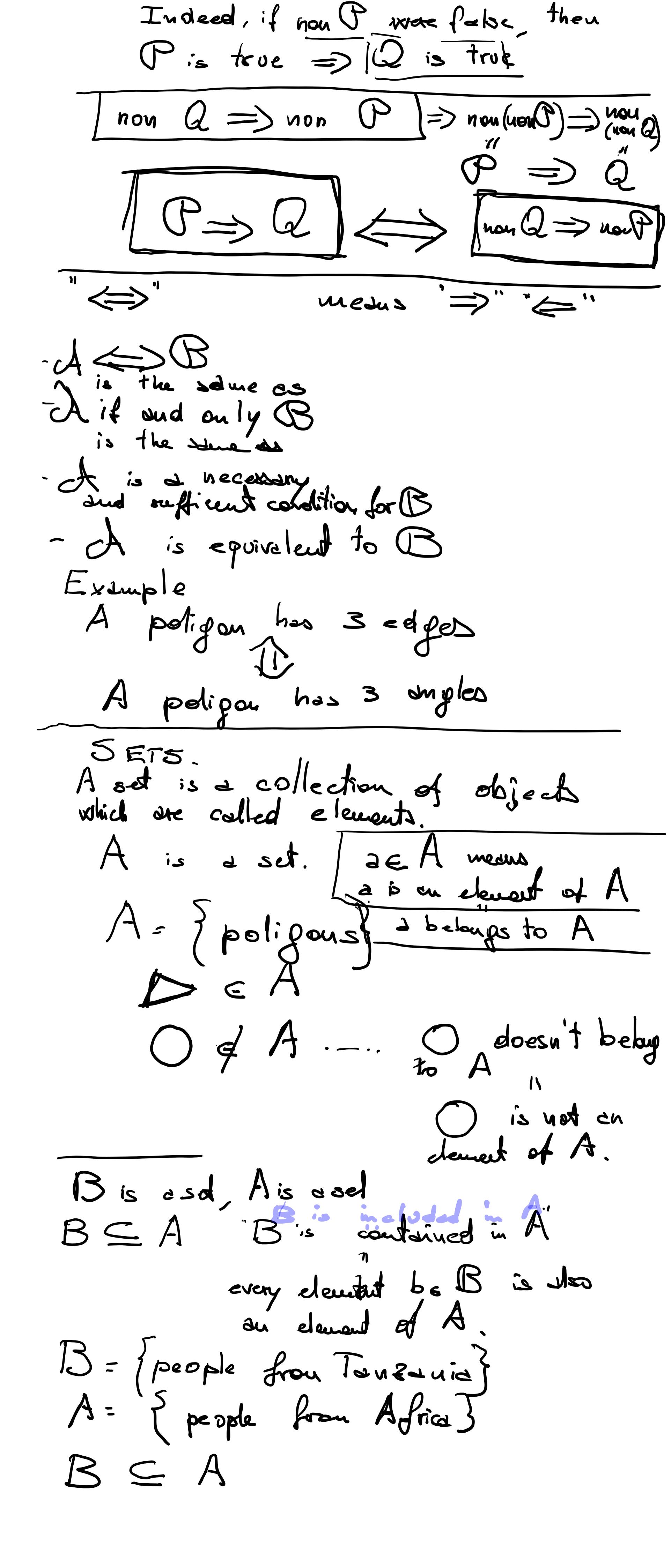
There have been some problems with the writing program this morning, so there is not a recording of my lecture at the black board. So let me summarize here the contents of today's lecture.





E, F are subsets of A
ENF" intersection of Earl F"
"the set of elements which are both in E and in F"
M = {ustored numers} = {0,1,2,3,}
E = } neW sudither there exists m = M}
$F = \{ n \in \mathbb{N} \mid s, t, there exist me \mathbb{N} \}$
ENF = { or N which have both}-
= {0,6,12,18}
EFEA EUF = {ceA. ceE or ceF}
End Fore 23 above
EUF = { 0, 2, 3, 4, 6, 8, 9, 10}
Remark: La or B mems
1) dis 400 but Bis out
3) Bis true but it is west 3) It med Bore both true
instead either of or B mesms
only 1) or 2) can occur.
E. $= F$.
III = E E
E F = {c st. ce E}
Remark ENF = FNE
EUF FUE
E F E
i.e. of the set with no elements
E = { even netral numbers} \{0}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$F \cap G = \emptyset$

= fractions 5 $-\frac{1}{2} = \frac{1}{2} + \frac{2}{2} = \frac{1}{2}$ $n \mapsto f(n) = n^{2} + 2n$ is said injective if $\forall a, a, c A$ d. 72 =>> fa) + fa) Examples: Z = { integer numbers} 2 $n \mapsto f(n) = n^2$ $3 \neq injective?$ $f(n_i) = (-3)^2 = 9$ $f(n_i) = (3)^3 = 9$ Definition: A fonction is soid sorjective if

be B Fac A b= fa) there exists at least onc... is it surjective?

No: for example 8EM is
not the image of any noN:
No: for example 8 EN is not the image of amp no IN: indeed f(n) = n'= 8 has no solutions in the domain
1) Let us observe that I is our justive
1) Let us observe that is surjective if and only if $f(A) = \{4a\}$, $a \in A\}$
i#
(In general $f(A) \subseteq B$)
2) From any function 1: A - AR) constant
1.13 DE Com compression
$Q: A \longrightarrow Q(a) = f(a)$
=> & is surjective
A
9 is the same as of
except that we take a smaller codomin
$1: \mathbb{N} \longrightarrow \mathbb{N}^{2}$
B={(Z)={0,1,4,9,16,25,}
$0 \cdot 7 \cdot $
g: Z de B hr sorjective
13 SUPJECTIVE
$h: \mathcal{U} \longrightarrow \mathcal{U}$ $h(u) = n^3$
$h(n_1) = n_1^3 = n_2^3 = f(n_2)$
$h(n_1) = n_1^3 = n_2^3 = f(n_2)$ $h is injicative$ $n_1 = n_2$
if we modify the condomin
<u> </u>
R: Z -> {0,±1,±8±27,} R is (injective and) surjective