Lesson 1 - 28/09/2022 -

- Dynamical systemy. - Lograngion mechanics. - A bit of Calculus of Voriations.

. To understand this "revolution", we start by some simple examples from population dynamics.

. Two examples in population dynamics.  
(1) Matthusian growth model.  

$$m(t) = population area at time t.$$
  
 $k \in \mathbb{R}$   
 $\dot{m}(t) = K m(t) \rightarrow the speed of growth is
 $population k = n(o) e^{Kt}$   
 $m(t) = n(o) e^{Kt}$   
 $m(t) = n(o) e^{Kt}$   
 $m(t) = n(o) e^{Kt}$   
 $m(t) = n(o) e^{Kt}$   
 $h(o) + k = 0$   
 $k = 0$   
 $m(t) = K ((m - m(t))) m(t)$   
 $m = 0$  or  $y = 0$  ( $k = 1$ ,  $m(t) > n = 0$  the  
 $population$  increases.  
 $if m - m(t) > 0 < m(t) > m = 0$  the  
 $population decreases.$   
 $g = K / m - p = \dot{x} = Kx - gx^2 \rightarrow By separation
 $g = k / m - p = \dot{x} = Kx - gx^2 \rightarrow By separation
 $g = k / m - p = \dot{x} = Kx - gx^2 \rightarrow By separation
 $g = m(t) = \frac{K m(0)}{gn(0) + (K - gn(0)) e^{-Kt}}$   
 $(g = K / m)$   
 $m(t) = \frac{K m(0)}{gn(0) + (K - gn(0)) e^{-Kt}}$   
 $(g = K / m)$   
 $(g = K /$$$$$ 





• Other two examples of 1-dim. vector fields.  
3) 
$$\begin{cases} \dot{x} = x^2 \\ x(o) = x_o \end{cases}$$
  
•  $\frac{dx}{dt} = x^2 - 0 \quad t = \int_{x_o}^{x} \frac{dx}{y^2} = -\frac{1}{y} \Big|_{x_o}^{x} = -\frac{1}{x} + \frac{1}{x_o}$   
=  $p \quad t + c = -\frac{1}{x} = 0 \quad x(t) = -\frac{1}{t + c}$   
Importing that  $x(o) = x_o$ , we obtain that  $c = -\frac{1}{x_o}$   
=  $p \quad x(t; 0, x_o) = -\frac{1}{t - \frac{1}{x_o}} = -\frac{1}{t - x_o t}$ 



![](_page_5_Figure_0.jpeg)

$$\dot{x}_{2}(t) = \underbrace{\mathcal{Z}}_{\mathcal{Z}} \underbrace{\mathcal{Z}}_{\mathcal{Z}} \left( \frac{2t}{3} \right)^{\eta/2} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{3/2} \right]^{1/3} = \left( x_{2}(t) \right)^{\eta/3} = \\ = \underbrace{\times (x_{2}(t))}_{\mathcal{Z}_{2}(t)} \left( \frac{2t}{3} \right)^{1/2} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{3/2} \right]^{1/3} = \left( x_{2}(t) \right)^{\eta/3} = \\ = \underbrace{\times (x_{2}(t))}_{\mathcal{Z}_{2}(t)} \left( \frac{2t}{3} \right)^{1/2} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{3/2} \right]^{1/3} = \left( x_{2}(t) \right)^{\eta/3} = \\ = \underbrace{\times (x_{2}(t))}_{\mathcal{Z}_{2}(t)} \left( \frac{2t}{3} \right)^{1/2} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{3/2} \right]^{1/3} = \left( x_{2}(t) \right)^{\eta/3} = \\ = \underbrace{\times (x_{2}(t))}_{\mathcal{Z}_{2}(t)} \left( \frac{2t}{3} \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{\eta/3} = \\ = \underbrace{\times (x_{2}(t))}_{\mathcal{Z}_{2}(t)} \left( \frac{2t}{3} \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{1/3} = \\ = \underbrace{\times (x_{2}(t))}_{\mathcal{Z}_{2}(t)} \left( \frac{2t}{3} \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{1/3} = \\ = \underbrace{\times (x_{2}(t))}_{\mathcal{Z}_{2}(t)} \left( \frac{2t}{3} \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \left( x_{2}(t) \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} = \left( \frac{2t}{3} \right)^{1/3} \right]^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} = \left( \frac{2t}{3} \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} = \left( \frac{2t}{3} \right)^{1/3} = \left( \frac{2t}{3} \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} = \left( \frac{2t}{3} \right)^{1/3} = \left( \frac{2t}{3} \right)^{1/3} = \underbrace{\left[ \left( \frac{2t}{3} \right)^{1/3} = \left( \frac{2t}{$$

Remark

It holds that, if  $X \in e^{CO}$  then  $z \in e^{CO}$ . Proof In fact, by hyp.  $x \in e^1$ . Let consider  $X \circ x = X(x) = \dot{x} = D$   $x \in e^2$ .  $n \in e^1 \in e_1 \in e_2$ Repeat the organization, with  $X \in e^2$ .  $X \cdot x = X(x) = \dot{x} = ro$   $x \in e^3$   $n \in e^2$  for  $x \in e^{CO}$  as the v.f.  $X \parallel$   $e^{CO}$  and so on ....  $x \in e^{CO}$  as the v.f.  $X \parallel$   $\cdots$  what can we deduce if  $X \in e^2(X, \mathbb{R}^n)$  or  $X \in e^K(X, \mathbb{R}^m)$ ?