
Methods and Models for Combinatorial Optimization

Lab exercise - Part II

L. De Giovanni

For the combinatorial optimization problem described in Part I, it is required to:

• design and implement an ad-hoc optimization algorithm, as an alternative to solving the
implemented model with Cplex or OPL. Any meta-heuristic can be developed, as well as
any of the approaches presented for the Travelling Salesman Problem (e.g., a contraint
generation or a cut-and-branch approach based on separating sub-tour elimination con-
straints). You can also keep inspiration from any method you can find in literature for
related problems, if it is related to the content of the course: if you decide to start from
some algorithm you find in literature, you should ask to the teacher before starting the
implementation;

• it is allowed (in particular for “OPL guys”) the use of available optimization libraries
like Matlab genetic algorithms, or Python libraries. Of course you can find ready-to-use
code for the TSP but, in this case, you should add some functionalities to the available
code (e.g. some more initialization options, intensification/diversification phases, ad-hoc
mutations etc.);

• test the performance of the implemented method, present the computational results and
compare the results to the ones obtained with the model solved by Cplex or OPL in Part
I (use the same instances generated for Part I). Typical questions to be addressed during
the performance test are: what are the running times? what is the gap with respect to the
optimal solution? It is better to use the proposed heuristic or the Cplex/OPL model? etc.
Notice that you should have more than one instance per size, so that average results should
be provided. Moreover, in case the implemented algorithm has randomized components,
you should either have a large number of instances, or rerun several (e.g. 10) times
the algorithm on the same instance and collect statistics (average times or performance,
standard deviations, min, max etc.);

• write a final report (10-20 pages) where you describe how you implemented the model
of Part I in Cplex or OPL (some implementation details, for example, about the maps
used to access variables, or how you created variables and constraints), some design issue
concerning the algorithm of Part II (not the general heuristic or branch-and-bound that
one can find in the notes or in a book, but how the method was customized), the feature of
any used libraries (where applicable), and the computational results (summarizing tables
and some comments) of both Part I and Part II, and their comparison.

1


