
Methods and Models for Combinatorial Optimization

Lab exercise - Part I

L. De Giovanni

Consider the following combinatorial optimization problem and the proposed Integer Lin-
ear Programming (ILP) model. The exercise is to implement the model using
the Cplex API (“cplex guys”) or OPL (“opl guys”) and to test it. Test should
determine the ability of the model to provide exact solutions for the proposed problem:
in particular we want to know up to which size (namely the number of holes) the problem
can be solved in different amounts of time (up to 0.1 seconds, up to 1 second, up to 10
seconds ...).

1 Problem description

A company produces boards with holes used to build electric panels (see Figure 1). Boards
are positioned over a machine and a drill moves over the board, stops at the desired
positions and makes the holes. Once a board is drilled, a new board is positioned and
the process is iterated many times. Given the position of the holes on the board, the
company asks us to determine the hole sequence that minimizes the total drilling time,
taking into account that the time needed for making an hole is the same and constant for
all the holes.

Figure 1: Sample boards for electric panels and an automatic drilling machine

1

Lab exercise - Part I

2 Mathematical formulation

2.1 Modelling framework

We can represent the problem on a weighted complete graph G = (N,A), where N is the
set of nodes and corresponds to the set of the positions where holes have to be made, and
A is the set of the arcs (i, j), ∀ i, j ∈ N , corresponding to the trajectory of the drill moving
from hole i to hole j. A weight cij can be associated to each arc (i, j) ∈ A, corresponding
to the time needed to move from i to j. In this graph model, the problem can be seen
as finding the path of minimum weight that visits all the nodes. Indeed, since the drill
has to come back to the initial position in order to start with the next board, the path
has to be a cycle. The problem can be thus seen as determining the minimum weight
hamiltonian cycle on G, that is a Travelling Salesman Problem (TSP) on G.

2.2 Mathematical Programming models

Several formulations for the TSP have been formulated based on (Miced) Integer Linear
Programming. Some of them include an exponential number of constraints (see Lecture
Notes on ”Exact methods for TSP”) and, in practice. they cannot be directly implemented
using basic Cplex API or basic OPL (they require a row generation procedure). We then
focus on compact formulations, i.e., formulations that requirer a polynomial (possibly
with small degree) number of variables and constraints.

In the following, we suggest a possible compact formulation based on network flows. It is
not the only available compact formulation: you may search the literature for an al-
ternative compact formulation and consider the opportunity of implementing
it (this would be appreciated, in particular for OPL implementation).

2.3 A possible model based on network flows

The TSP can be formulated (among others) as a network flow model on G. Arbitrarily
select a node in N (call it node 0) as starting node, and let |N | − 1 be the amount of its
outgoing flow. The idea is to push this amount of flow towards the remaining nodes in
such a way that (i) each node (different from 0) receives 1 unit of flow, (ii) each node is
visited once, and (iii) the sum of cij over all the arcs shipping some flow is minimum.

Sets:

• N = graph nodes, representing the holes;

• A = arcs (i, j), ∀ i, j ∈ N , representing the trajectory covered by the drill to move
from hole i to hole j.

Parameters:

• cij = time taken by the drill to move from i to j, ∀ (i, j) ∈ A;

• 0 = arbitrarily selected starting node, 0 ∈ N .

L. De Giovanni

Methods and Models for Combinatorial Optimization

2

Lab exercise - Part I

Decision variables:

• xij= amount of the flow shipped from i to j, ∀ (i, j) ∈ A;

• yij= 1 if arc (i, j) ships some flow, 0 otherwise, ∀ (i, j) ∈ A.

Integer Linear Programming model:

min
∑

i,j:(i,j)∈A

cijyij (1)

s.t.
∑

j:(0,j)∈A

x0j = |N | − 1 (2)

∑
i:(i,k)∈A

xik −
∑
j:(k,j)

xkj = 1 ∀ k ∈ N \ {0} (3)

∑
j:(i,j)∈A

yij = 1 ∀ i ∈ N (4)

∑
i:(i,j)∈A

yij = 1 ∀ j ∈ N (5)

xij ≤ (|N | − 1) yij ∀ (i, j) ∈ A (6)

xij ∈ R+ ∀ (i, j) ∈ A (7)

yij ∈ {0, 1} ∀ (i, j) ∈ A (8)

We notice that the constraint (2) is redundant: by (3), at least |N | − 1 units of flows
must be available and, by optimality, we will not send more than |N | − 1 units from 0.
Moreover, even by optimality, there is no need to send flow towards node 0, so that we
can fix xi0 = 0, for all i ∈ N , i.e., we can eliminate those variables. We thus obtain the
following formulation, that can be implemented using the Cplex API (or OPL).

min
∑

i,j:(i,j)∈A

cijyij (9)

s.t.
∑

i:(i,k)∈A

xik −
∑

j:(k,j),j 6=0

xkj = 1 ∀ k ∈ N \ {0} (10)

∑
j:(i,j)∈A

yij = 1 ∀ i ∈ N (11)

∑
i:(i,j)∈A

yij = 1 ∀ j ∈ N (12)

xij ≤ (|N | − 1) yij ∀ (i, j) ∈ A, j 6= 0 (13)

xij ∈ R+ ∀ (i, j) ∈ A, j 6= 0 (14)

yij ∈ {0, 1} ∀ (i, j) ∈ A (15)

corresponding to the one presented in the paper

L. De Giovanni

Methods and Models for Combinatorial Optimization

3

Lab exercise - Part I

Gavish B., Graves S. (1978), The travelling salesman problem and related
problems, working Paper GR-078-78. Operations Research Center, Massachusetts
Institute of Technology, Cambridge.

L. De Giovanni

Methods and Models for Combinatorial Optimization

4

