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2



The link prediction task
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Given a graph at time T, 
can we output a ranked 
list of links that are 
predicted to appear in the 
graph at time T+x ?

idea
We can build the list by 
using a measure of 
similarity/proximity 
between nodes



Applications
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• Recommendation in social networks
• Finding experts and collaborations in academic

social networks
• Reciprocal relationships prediction
• Network completion problem
• Social tie prediction
• …



Link prediction problems
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Wang P, Xu BW, et al. Sci China Inf Sci January 2015 Vol. 58 011101:6
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Figure 8 The category of link prediction techniques and link prediction problems.

are based on the link prediction techniques; consequently two perspectives join in here. Therefore, two
perspectives are closely related. Furthermore, we should highlight that the category in Figure 8 can be
extended with the progress of link prediction research.

For the evaluation metrics used in link prediction, they commonly can be divided into two types: fixed
threshold metrics and threshold curves. The precision and recall on top-N predictions are typical fixed
threshold metrics. These measures often su↵er from the limitation that they rely upon a reasonable

we focus on 
homogeneous 
networks

Wang, Xu, Wu, Zhou (2015) Link prediction in social networks: the state-of-the-art
https://link.springer.com/content/pdf/10.1007/s11432-014-5237-y.pdf

https://link.springer.com/content/pdf/10.1007/s11432-014-5237-y.pdf


Link prediction techniques

6

Wang P, Xu BW, et al. Sci China Inf Sci January 2015 Vol. 58 011101:6

Link prediction techniques

Topology

Neighbor Path Community Structural 
holeTriad Tie 

strength HomophilyRandom
walk

Node-based
-Node similarity
-Text similarity
···  

Neighbor-based
-CN
-JC
-AA
-LHN
-PA
-RA
···

Path-based
-Katz
-LP
-RSS
-Friend Link
-VCP
···

Social Theory-based
-Structural hole
-Triad
-Tie strength
-Homophily
···

Random Walk-based
-SimRank
-PropFlow
-RPR
-HT
-CT
-CST
···

Node Social theory

Figure 8 The category of link prediction techniques and link prediction problems.

are based on the link prediction techniques; consequently two perspectives join in here. Therefore, two
perspectives are closely related. Furthermore, we should highlight that the category in Figure 8 can be
extended with the progress of link prediction research.

For the evaluation metrics used in link prediction, they commonly can be divided into two types: fixed
threshold metrics and threshold curves. The precision and recall on top-N predictions are typical fixed
threshold metrics. These measures often su↵er from the limitation that they rely upon a reasonable



Topology based techniques
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SAB=3

Common neighbours
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Common neighbours - CN

SCN = A·A 

These local techniques are 
modification of a simple idea

SCN(i,j) = |Ni⋂ Nj|

The more neighbours in 
common, the more likely the 
link to appear 

intersection

(the set of) neighbours of j

binary adjacency matrix 
of an undirected network

SIMPLE

TRIADIC CLOSURE

A B

C

D

E



Rationale
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95% of the new 
friendships in facebook
are friend-of-a-friend

¡ Can	we	learn	to	predict	new	friends?
§ Facebook’s People	You	May	Know
§ Let’s	look	at	the	FB	data:	

§ 92%	of	new	friendships	on	
FB	are	friend-of-a-friend

§ More	mutual	friends	helps

11/30/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 9
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Relative 
probability of 
adding a new 
friend

Friendship 
by number 

of hops

# of friends in common # of hops

more mutual 
friendships help in 
becoming a friend



Resource allocation
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Punishes more heavily the 
high-degree common 
neighbours

SRA(i,j) = ∑  1 /|Nk|
k ∊ Ni ⋂ Nj

Resource allocation - RA

A B

C

D

E

SAB  = 1/5 + 1/2 + 1/4 = 19/20



Adamic Adar
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… but very many variations exist

A B

C

D

E

SAB  = 1/ln(5) + 1/ln(2) + 1/ln(4)

Adamic Adar - AA

SAA(i,j) = ∑  1 / ln|Nk|

Puts more emphasis on 
less-connected neighbours, 

which are more likely to 
make i and j meet together

k ∊ Ni ⋂ Nj



Path based techniques
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KatsThese global techniques 
are a generalization of 
CN to take into account 
the (very many) paths of 
length ℓ≥2 

SKatz = ∑ "ℓ Aℓ

# of paths of length ℓ
between nodes i and j

damping factor (weights 
more shorter paths), it 
needs to be sufficiently 
small 0< "<1

ℓ≥1

Local path - LP

SLP = A2 + " A3



Random walk based techniques
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Random walk with restart - RWR

Some global techniques 
exploit the Local PageRank
value

SRWR(i,j) = pij + pji

pi = c M pi + (1-c) ei

teleportation 
to node i

random walk 
with restart

A B

C

D

E

pAB

pBA



Random walk based techniques
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Other exploit a pure
Random Walk

A B

C

D

E

pAB

pBA

pi(t) = Mt ei

start from 
node i

pure random 
walk steps

Local random walk - LRW
SLRW(i,j|t) = |Ni|pij(t)

+ |Nj| pji(t)

Superposed random walk - SRW

SSRW(i,j|t) = ∑ SLRW(i,j|u)
u = 1… t



Ingredients Networks - Pasta
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Elena Camuffo, Laura Crosara, Matteo Moro



Ingredients Networks - Pasta
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Performance comparison
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Lü, Zhou, “Link prediction in complex networks: A survey,” 2011
https://www.sciencedirect.com/science/article/pii/S037843711000991X

https://www.sciencedirect.com/science/article/pii/S037843711000991X
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Start from a friendship network with 
active edges E, and divide them into:

• a probe set P (a small subset of it)
• a test set T (the remaining edges)

Build the similarity values, S, by exploiting 
the test set T

Denote the inactive edges set with I

P
T

I

Precision
Percentage of the top L 
links, ranked according 
to the similarity 
measure S, that belong 
to the probe set P

Precision



AUC = Area under the ROC curve
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PT

I

I = inactive, P = probe, T = test

receiver operating characteristic

P(S Inactive > threshold)

P(
S 
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AUC explained
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PDFs of P and I values



AUC expression
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Derive the probability that 
similarity is larger in P than in I, 
i.e., the probability that a correct 
estimate is obtained

(S(p)>S(i)?1:0)

p ∊ P, i ∊ I |P||I|AUC = ∑
PT

I

I = inactive, P = probe, T = test

AUC = 1 corresponds to a perfect
classifier 



Performance - Neighbour

22

L. Lü, T. Zhou / Physica A 390 (2011) 1150–1170 1155

Table 1
Accuracies of different local similarity indices subject to link prediction, measured by the AUC value. Each number is obtained by averaging over 10
implementations with independently random partitions of testing set (90%) and probe set (10%). The entries corresponding to the highest accuracies
among these 10 indices are emphasized in black. The six real networks for testing are a protein–protein interaction network (PPI) [16], a co-authorship
network of scientists who are themselves publishing on the topic of network science (NS) [53], an electrical power grid of the western US (Grid) [54], a
network of the US political blogs (PB) [55], a router-level Internet collected by Rocketfuel Project (INT) [56], and a network of the US air transportation
system (USAir) [57]. Detailed information about these networks can be found in Ref. [51].

Indices PPI NS Grid PB INT USAir

CN 0.889 0.933 0.590 0.925 0.559 0.937
Salton 0.869 0.911 0.585 0.874 0.552 0.898
Jaccard 0.888 0.933 0.590 0.882 0.559 0.901
Sørensen 0.888 0.933 0.590 0.881 0.559 0.902
HPI 0.868 0.911 0.585 0.852 0.552 0.857
HDI 0.888 0.933 0.590 0.877 0.559 0.895
LHN1 0.866 0.911 0.585 0.772 0.552 0.758
PA 0.828 0.623 0.446 0.907 0.464 0.886
AA 0.888 0.932 0.590 0.922 0.559 0.925
RA 0.890 0.933 0.590 0.931 0.559 0.955

performance of PA. In contrast, although USAir has well-defined geographical positions of nodes, its links are not physical.
Empirical data has demonstrated that the number of airline flights is not very sensitive to the geographical distancewithin a
big range [59,60] (another topological evidence for the relatively good performance of PA on USAir is the so-called rich-club
phenomenon [61,62]). The LHN1 index performs the second worst, however, compared with all other neighborhood-based
indices, it is very good at uncovering the missing links connecting two small-degree nodes [27].

Recently, Pan et al. [63] have compared all the local indices appeared in Ref. [51] in a similarity-based community
detection algorithm, and their experimental results again indicate that the RA index performs best. Wang et al. [64] have
applied the RA index to estimate the weights between stations in Chinese railway, which shows better performance than
the CN index. In addition, the RA index for bipartite networks can be applied in personalized recommendation with higher
accuracy than the classical collaborative filtering [65].

3.2. Global similarity indices

(11) Katz Index [66]. This index is based on the ensemble of all paths, which directly sums over the collection of paths
and is exponentially damped by length to give the shorter paths more weights. The mathematical expression reads

sKatzxy =
1X

l=1

� l · |pathshlixy | = �Axy + �2(A2)xy + �3(A3)xy + · · · , (12)

where pathshlixy is the set of all paths with length l connecting x and y, and � is a free parameter (i.e., the damping factor)
controlling the path weights. Obviously, a very small � yields a measurement close to CN, because the long paths contribute
very little. The similarity matrix can be written as

SKatz = (I � �A)�1 � I. (13)

Note that, � must be lower than the reciprocal of the largest eigenvalue of matrix A to ensure the convergence of Eq. (12).
(12) Leicht–Holme–Newman Index (LHN2) [36]. This index is a variant of the Katz index. Based on the concept that two

nodes are similar if their immediate neighbors are themselves similar, one obtains a self-consistent matrix formulation

S = �AS +  I =  (I � �A)�1 =  (I + �A + �2A2 + · · ·), (14)

where � and are free parameters controlling the balance between the two components of the similarity. Setting = 1, it
is very similar to the Katz index. Note that, (Al)xy is equal to the number of paths of length l from x to y. The expected value
of (Al)xy, namely E[(Al)xy], equals (kxky/2M)�l�1

1 , where �1 is the largest eigenvalue of A andM is the total number of edges
in the network. Replace (Al)xy in Eq. (14) with (Al)xy/E[(Al)xy], we obtain the expression:

sLHN2xy = �xy + 2M
kxky

1X

l=0

� l�1�l(Al)xy =

1 � 2M�1

kxky

�
�xy + 2M�1

kxky

"✓
I � �

�1
A
◆�1

#

xy

, (15)

where �xy is the Kronecker function. Since the first item is a diagonalmatrix, it can be dropped and thuswe arrive to a compact
expression

S = 2m�1D�1
✓
I � �A

�1

◆�1

D�1, (16)

Resource allocation

• 90% of edges in the test set T
• test set chosen at random
• average over 10 tests

power grid

co-authorships in 

network science

protein-protein 

interaction network

US political blogs

router-level 
Internet

air transport. 

system
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Kats for AUC
LP for precision

• 90% of edges in the test set T
• test set chosen at random
• L=100 for precision

power grid

co-authorships in 

network science

protein-protein 

interaction network

US political blogs

router-level 
Internet

air transport. 

system
L. Lü, T. Zhou / Physica A 390 (2011) 1150–1170 1157

Table 2
Accuracies of the three path-dependent similarity indices, measured by AUC and precision. Here, only the main components of example networks are
considered (see Ref. [78] for detailed information). Each number is obtained by averaging over 10 independent realizations. The entries corresponding
to the highest accuracies are emphasized in black. For LP, Katz and LHN2 indices, the AUC values are corresponding to the optimal parameter which will
be used to calculate their corresponding precision where we set L = 100. For USAir, the optimal value of ✏ is negative (see the explanation in Ref. [51]).
LP⇤ denotes the LP index with a fixed parameter ✏ = 0.01 (for USAir ✏ = �0.01). The very small difference between the optimal case and the case with
✏ = 0.01 suggests that in the real application, one can directly set ✏ as a very small number, instead of finding out its optimum that may cost much time.
This again supports our motivation that the essential advantage of the usage of the second-order neighborhood is to improve the distinguishability of the
similarity scores.

AUC PPI NS Grid PB INT USAir

LP 0.970 0.988 0.697 0.941 0.943 0.960
LP⇤ 0.970 0.988 0.697 0.939 0.941 0.959
Katz 0.972 0.988 0.952 0.936 0.975 0.956
LHN2 0.968 0.986 0.947 0.769 0.959 0.778

Precision PPI NS Grid PB INT USAir

LP 0.734 0.292 0.132 0.519 0.557 0.627
LP⇤ 0.734 0.292 0.132 0.469 0.121 0.627
Katz 0.719 0.290 0.063 0.456 0.368 0.623
LHN2 0 0.060 0.005 0 0 0.005

This index has been applied to quantify the similarity between nodes on collaborative recommendation task [77]. The results
indicate that a simple nearest-neighbors rule based on similarity measured by MFI performs best.

Comparingwith the local similarity indices, the global ones ask for thewhole topological information. Although the global
indices can providemuchmore accurate prediction than the local ones, they suffer two big disadvantages: (i) the calculation
of a global index is very time consuming, and is usually infeasible for large-scale networks; (ii) sometimes, the global
topological information is not available, especially if we would like to implement the algorithm in a decentralized manner.
As we will show in the next subsection, a promising tradeoff is the quasi-local indices, which consider more information
than local indices while abandon the superfluous information that makes no contribution or very little contribution to the
prediction accuracy.

3.3. Quasi-local indices

(18) Local Path Index (LP) [51,78]. To provide a good tradeoff of accuracy and computational complexity,wehere introduce
an index that takes consideration of local paths, with wider horizon than CN. It is defined as

SLP = A2 + ✏A3, (27)

where ✏ is a free parameter. Clearly, this measure degenerates to CN when ✏ = 0. And if x and y are not directly connected
(this is the case we are interested in), (A3)xy is equal to the number of different paths with length 3 connecting x and y. This
index can be extended to account for higher-order paths, as

SLP(n) = A2 + ✏A3 + ✏2A4 + · · · + ✏n�2An, (28)

where n > 2 is the maximal order. With the increasing of n, this index asks for more information and computation.
Especially, when n ! 1, SLP(n) will be equivalent to the Katz index that takes into account all paths in the network. The
computational complexity of this index in an uncorrelated network is O(Nhkin), which grows fast with the increasing of n
andwill exceed the complexity for calculating the Katz index (approximate to O(N3)) for large n. Experimental results show
that the optimal n is positively correlated with the average shortest distance of the network [78].

The LP index performs remarkably better than the neighborhood-based indices, such as RA, AA and CN [51]. It is because
the neighborhood information is less distinguishable and two node pairs are of high probability to be assigned the same
similarity scores. Taking INT as an example, there are more than 107 node pairs, 99.59% of which are assigned zero score by
CN. For all the node pairs having scores higher than 0, 91.11% are assigned score 1, and 4.48% are assigned score 2. Using
a little bit more information involving the next nearest neighbors may break the ‘‘degeneracy of the states’’ and make the
similarity scores more distinguishable. This is the reason why the LP index largely improves the prediction accuracy.

The comparison of LP indexwith other two path-dependent global indices, the Katz and LHN2 indices, is shown in Table 2.
Overall speaking, the Katz index performs best subject to the AUC value, while the LP index is the best for the precision. For
the network with small average shortest distance (e.g., USAir and PB), LP index gives the most accurate predictions for both
AUC and precision. In aword, the LP index provides competitively good predictionswhile asks formuch lighter computation
compared with the global indices.

(19) Local Random Walk (LRW) [79]. To measure the similarity between nodes x and y, a random walker is initially put
on node x and thus the initial density vector E⇡x(0) = Eex. This density vector evolves as E⇡x(t + 1) = PT E⇡x(t) for t � 0. The
LRW index at time step t is thus defined as

sLRWxy (t) = qx⇡xy(t) + qy⇡yx(t). (29)

… but very low precision values !!!!
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Random walk 
methods

1158 L. Lü, T. Zhou / Physica A 390 (2011) 1150–1170

Table 3
Comparison of algorithms’ accuracy quantified by AUC and precision. For each network, the training set contains 90% of the known links. Each number is
obtained by averaging over 1000 implementations with independently random divisions of training set and probe set. The parameters " = 10�3 for LP (for
USAir, " = �10�3) and c = 0.9 for RWR. The numbers inside the brackets denote the optimal step of LRW and SRW indices. For example, 0.972(2) means
the optimal AUC is obtained at the second step of LRW. The highest accuracy in each line is emphasized in black. For HSM, 5000 samples of dendrograms
for each implementation are generated.

AUC CN RA LP ACT RWR HSM LRW SRW

USAir 0.954 0.972 0.952 0.901 0.977 0.904 0.972(2) 0.978(3)
NetScience 0.978 0.983 0.986 0.934 0.993 0.930 0.989(4) 0.992(3)
Power 0.626 0.626 0.697 0.895 0.760 0.503 0.953(16) 0.963(16)
Yeast 0.915 0.916 0.970 0.900 0.978 0.672 0.974(7) 0.980(8)
C.elegans 0.849 0.871 0.867 0.747 0.889 0.808 0.899(3) 0.906(3)

Precision CN RA LP ACT RWR HSM LRW SRW

USAir 0.59 0.64 0.61 0.49 0.65 0.28 0.64(3) 0.67(3)
NetScience 0.26 0.54 0.30 0.19 0.55 0.25 0.54(2) 0.54(2)
Power 0.11 0.08 0.13 0.08 0.09 0.00 0.08(2) 0.11(3)
Yeast 0.67 0.49 0.68 0.57 0.52 0.84 0.86(3) 0.73(9)
C.elegans 0.12 0.13 0.14 0.07 0.13 0.08 0.14(3) 0.14(3)

where q is the initial configuration function. In Ref. [79] Liu and Lü applied a simple formdetermined by node degree, namely
qx = kx

M . Note that, here we only focus on the few-step randomwalk instead of the stationary state where we have ⇡xy = ky
M

and thus leading to a local index.
(20) Superposed RandomWalk (SRW) [79]. Similar to the RWR index, Liu and Lü [79] proposed the SRW index, where the

random walker is continuously released at the starting point, resulting in a higher similarity between the target node and
the nodes nearby. The mathematical expression reads

sSRWxy (t) =
tX

⌧=1

sLRWxy (⌧ ) =
tX

⌧=1

[qx⇡xy(⌧ ) + qy⇡yx(⌧ )], (30)

where t denotes the time steps.
Liu and Lü [79] systematically compared these two indices, LRW and SRW, with five other indices, including three local

(or quasi-local) indices, CN, RA and LP, and two other random-walk-based global indices, ACT and RWR, as well as the
hierarchical structure method (HSM) proposed by Clauset et al. [80] (see Section 4.1 for the detailed introduction of HSM).
According to the experimental results (see Table 3), LRW and SRW methods perform better than other indices with their
respective optimal walking step positively correlated with the average shortest distance of the network.

Furthermore, the computational complexity of LRW and SRW is lower than ACT and RWR whose time complexity in
calculating inverse and pseudoinverse is approximately O(N3), while the time complexity of n-steps LRW and SRW are
approximately O(Nhkin), ignoring degree heterogeneity of the network. That is to say, when n is small LRW and SRW
run much faster than other random-walk-based global similarity indices. The advantage of LRW and SRW for their low
computational complexity is prominent especially in the huge size (i.e. large N) and sparse (i.e. small hki) networks. For
example, LRW or SRW for power grid is thousand times faster than ACT, cos+ and RWR, even for n ' 10 [79].

With the similar motivation of LRW and SRW, Mantrach et al. recently proposed a bounded normalized random walk
with restart algorithm (see Eq. (21) for the definition of RWR), and applied it to address the classification problem [81].
With this method both complexities of time and space can be reduced.

4. Maximum likelihood methods

This section will introduce two recently proposed algorithms based on the maximum likelihood estimation. These
algorithms presuppose some organizing principles of the network structure, with the detailed rules and specific parameters
obtained by maximizing the likelihood of the observed structure. Then, the likelihood of any non-observed link can be
calculated according to those rules and parameters.

From the viewpoint of practical applications, an obvious drawback of the maximum likelihood methods is that it is very
time consuming. A well designed algorithm is able to handle networks with up to a few thousand nodes in a reasonable
time, but will definitely fail to deal with the huge online networks that often consist of millions of nodes. In addition, the
maximum likelihood methods are probably not among the most accurate ones (see, for example, the comparison between
hierarchical structure model and some typical similarity-based methods in Table 3). However, the maximum likelihood
methods provide very valuable insights into the network organization, which cannot be gained from the similarity-based
algorithms or the probabilistic models.

4.1. Hierarchical structure model

Empirical evidence indicates that many real networks are hierarchically organized, where nodes can be divided into
groups, further subdivided into groups of groups, and so forth over multiple scales [21] (e.g., metabolic networks [43] and

… but simple RA/LP methods 
still behave very well !
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Backstrom, Lescovec, “Supervised random walks: predicting and 

recommending links in social networks,” 2011
https://dl.acm.org/doi/pdf/10.1145/1935826.1935914

https://dl.acm.org/doi/pdf/10.1145/1935826.1935914


Supervised random walk - SRW
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In random walk with 
restart, we add 
fractional weights to 
the adjacency matrix A, 
and optimize them in 
order to find the best fit
to the existent, i.e., we 
require S(I) < S(P)

idea model

aij = 
1

1 + e - <! , "ij>

features vector, i.e., 
things we know about 
link i-j: when it was 
created, # of exchanged 
messages, # photos i
and j appeared in, etc.

parameters
vector, to be 

estimated 
via a best fit
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node
• age, gender, degree
edge
• age of an edge
• communication
• profile visits
• co-tagged photos

Features: decision 
tree

logisticregression

Learning Method AUC Prec@20
Random Walk with Restart 0.63831 3.41
Adamic-Adar 0.60570 3.13
Common Friends 0.59370 3.11
Degree 0.56522 3.05
DT: Node features 0.60961 3.54
DT: Network features 0.59302 3.69
DT: Node+Network 0.63711 3.95
DT: Path features 0.56213 1.72
DT: All features 0.61820 3.77
LR: Node features 0.64754 3.19
LR: Network features 0.58732 3.27
LR: Node+Network 0.64644 3.81
LR: Path features 0.67237 2.78
LR: All features 0.67426 3.82
SRW: one edge type 0.69996 4.24
SRW: multiple edge types 0.71238 4.25

Table 2: Hep-Ph co-authorship network. DT: decision tree, LR:
logistic regression, and SRW: Supervised RandomWalks.

Learning Method AUC Prec@20
Random Walk with Restart 0.81725 6.80
Degree 0.58535 3.25
DT: Node features 0.59248 2.38
DT: Path features 0.62836 2.46
DT: All features 0.72986 5.34
LR: Node features 0.54134 1.38
LR: Path features 0.51418 0.74
LR: All features 0.81681 7.52
SRW: one edge type 0.82502 6.87
SRW: multiple edge types 0.82799 7.57
Table 3: Results for the Facebook dataset.

pendent datasets, one for training and one for testing. Each perfor-
mance value is the average over all of the graphs in the test set.
Figure 8 shows the ROC curve for Astro-Ph dataset, compar-

ing our method to an unweighted random walk. Note that much
of the improvement in the curve comes in the area near the ori-
gin, corresponding to the nodes with the highest predicted values.
This is the area that we most care about, i.e., since we can only
display/recommend about 20 potential target nodes to a Facebook
user we want the top of the ranking to be particularly good (and do
not care about errors towards the bottom of the ranking).
We compare the Supervised RandomWalks to unsupervised link-

prediction methods: plain Random Walk with Restarts, Adamic-
Adar score [1], number of common friends, and node degree. For
supervised machine learning methods we experiments with deci-
sion trees and logistic regression and group the features used for
training them into three groups:

• Network features: unweighted random walk scores, Adamic-
Adar score, number of common friends, and degrees of nodes
s and the potential target c ∈ C

• Node features: average of the edge features for those edges
incident to the nodes s and c ∈ C, as described in Section 4

• Path features: averaged edge features over all paths between
seed s and the potential destination c.

Tables 2 and 3 compare the results of various methods on the
Hep-Ph co-authorship and Facebook networks. In general, we note
very performance of Supervised Random Walks (SRW): AUC is in
the range 0.7–0.8 and precision at top 20 is between 4.2–7.6. We
consider this surprisingly good performance. For example, in case

Dataset AUC Prec@20
SRW LR SRW LR

Co-authorship Astro-Ph 0.70548 0.67639 2.55 2.15
Co-authorship Cond-Mat 0.74173 0.71672 2.54 2.61
Co-authorship Hep-Ph 0.71238 0.67426 4.18 3.82
Co-authorship Hep-Th 0.72505 0.69428 2.59 2.61
Facebook (Iceland) 0.82799 0.81681 7.57 7.52

Table 4: Results for all datasets. We compare favorably to lo-
gistic features as run on all features. Our Supervised Random
Walks (SRW) perform significantly better than the baseline in
all cases on ROC area. The variance is too high on the Top20
metric, and the two methods are statistically tied on this metric.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fr
ac

tio
n 

Po
sit

ive
s

Fraction Negatives

ROC Curve for SRW and RW w/ Restart

Random Walk w/ Restarts
Supervised Randow Walk

Figure 8: ROC curve of Astro-Ph test data.

of Facebook this means that out of 20 friendships we recommend
nearly 40% of them realize in near future.
Overall, Supervised RandomWalks (SRW) give a significant im-

provement over the unweighted RandomWalk with Restarts (RWR).
SRW also gives gains over other techniques such as logistic re-
gression which combine features. For example, in co-authorship
network (Tab. 2) we note that unsupervised RWR outperforms de-
cision trees and slightly trails logistic regression in terms of AUC
and Prec@20. Supervised Random Walks outperform all methods.
In terms of AUC we get 6% and in terms of Prec@20 near 12%
relative improvement. In Facebook (Tab. 3), Random Walk with
Restarts already gives near-optimal AUC, while Supervised Ran-
dom Walks still obtain 11% relative improvement in Prec@20.
It is important to note that, in addition to outperforming the other

methods, Supervised RandomWalks do so without the tedious pro-
cess of feature extraction. There are many network features relating
pairs of unconnected nodes (Adamic-Adar was the best out of the
dozens examined in [21], for example). Instead, we need only se-
lect the set of node and edge attributes, and Supervised Random
Walks take care of determining how to combine them with the net-
work structure to make predictions.
Last, Table 4 compares the performance of top two methods: Su-

pervised Random Walks and logistic regression. We note that Su-
pervised Random Walks compare favorably to logistic regression.
As logistic regression requires state of the art network feature ex-
traction and Supervised Random Walks outperforms it out of the
box and without any ad hoc feature engineering.
When we examine the weights assigned, we find that for Face-

book the largest weights are those which are related to time. This
makes sense as if a user has just made a new friend u, she is
likely to have also recently met some of u’s friends. In the co-
authorship networks, we find that the number of co-authored pa-
pers and the cosine similarity amongst titles were the features with
highest weights.
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¡ 2.3x	improvement	over	previous	FB-PYMK	
(People	You	May	Know)

2.3x

2511/30/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu
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Daminelli, Thomas, Duràn, Cannistraci, “Common neighbours and the local-community-paradigm

... bipartite networks,” 2015
https://iopscience.iop.org/article/10.1088/1367-2630/17/11/113037/pdf

https://iopscience.iop.org/article/10.1088/1367-2630/17/11/113037/pdf


Problem

30

In bipartite graphs nodes 
sharing a common 
neighbour cannot be linked

in bipartite 
networks a friend-
of-a-friend cannot
be a friend

a three-hop
connection is 
requiredextend the idea of 2-hops 

neighbour into that of 3-
hops neighbour

idea
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Identify nodes in all 3-
hops connections 
between i and j with

CNi,j = {NNi ⋂ Nj} ⋃ {Ni ⋂ NNj} 

circles squares

CNij

i
j

Adamic Adar - AA

Common neighbours - CN

SAA(i,j) = ∑  1 / ln|Nk|
k ∊ CNi,j

SCN(i,j) = |CNi,j|

Resource allocation - RA
SRA(i,j) = ∑  1 / |Nk|

k ∊ CNi,j
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onwewill refer to the former as classical models and the latter as LCP-basedmodels. All the details on these
models are provided in theMethods.

A theoretical innovation of this article is the definition of the LCP-theory and the relative local-basedmodels
for link prediction in undirected and unweighted bipartitenetworks. However, thefirst and nontrivial step
required for this extension is the definition of the concept of CN index in bipartite topologies: surprisingly, as
mentioned above, a concept not yet formally defined in network theory.

Methods

Definition ofCNs and LCP-theory in bipartite networks
The definition of CNs inmonopartite networks is related to the concept of triadic closure. In an undirected and
unweightedmonopartite graph, the triadic closure produces a triangle when an edge connects two nonadjacent
nodes which already have aCN. Therefore, any node connected to two nonadjacent nodes thatmight be
involved in the triangular closure between them is aCN.Moreover, the triadic closure has themain property of
enclosing the shortest path between the twononadjacent nodes. Thus, intuitively the definition of CNs in
bipartite networks turns out to be related to quadrangular closure (figure 1(B)) that is the equivalent of triangular
closure operation in bipartite topologies (Latapy et al 2008). In fact, in bipartite structures, the quadrangular
closure encloses the shortest path between two non-adjacent nodes that belong to two distinct classes
(figure 1(B)). This entails that in bipartite networks we define theCNs of two given nonadjacent seed nodes (for
whichwewant to estimate the likelihood of theirmissing interaction) as the nodes that are involved in all
possible quadrangular closures between these seed nodes, and the LCLs as all the links that occur between these
CNs (figure 1(B)). For the sake of clarity, we notice that the Kunegis definition of the P3 link prediction index in
bipartite networks (Kunegis 2014) counts the number of paths of length three between two seed nodes. Thus, it is
mathematically (not conceptually) equivalent to our LCLs definition, but not to ourCNs definition. For
instance, infigure 1(B) thefirst neighbourhood of the two seed nodes x and y counts 6 CNs and 7 LCLs.
Analogously, for two given adjacent seed nodes forwhichwewant to estimate the reliability of their existing
interaction, we define theCNs as the nodes that are involved in all already existing quadrangles passing through
the seed nodes, and the LCLs as all the links that occur between these CNs. A practical consequence of these
definitions is thatmathematically, both theCN, JC, AA andRA indices and their Cannistraci variations for
prediction in the bipartite networks, can be expressed using the same formula provided formonopartite
networks.

Figure 1.Definition of commonneighbours (CN), local community links (LCL) and local community. (A)Example ofmonopartite
network topology. CNs are the nodes (white colour) touched by all the possible shortest paths between two nonadjacent nodes,
providing triangular closure between them. LCLs are the links (white colour) between theCNs. The cohort of CNs and their respective
LCLs is named a local community. (B)Example of bipartite network topology. CNs are the nodes (white colour) touched by all the
possible shortest paths between two nonadjacent nodes, providing quadrangular closure between them. LCLs are the links (white
colour) between the CNs. The cohort of CNs and their respective LCLs is named a local community.
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g(k)  = |CNi,j ⋂ Nk |

For each node k in the 
local community CNi,j
identify the number of 
neighbours of k that 
belong to the community

i.e., the # of local 
community links

Adamic Adar - CAA

Common neighbours - CAR

SCAA(i,j) = ∑  g(k) / ln|Nk|
k ∊ CNi,j

Resource allocation - CRA
SCRA(i,j) = ∑ g(k) / |Nk|

k ∊ CNi,j

SCAR(i,j) = ∑ g(k)
k ∊ CNi,j
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was used to apply the link predictor, which offered as output the list of candidate links (composed of the
nonobserved and the removed edges) ranked in decreasing likelihood of existence. The precision represents the
ratio of correct edges recovered out of the top L edges in the candidate list generated by each link predictor. This
operationwas repeated 100 times for each network andwe report themean and standard error for eachmethod
in supplementary figure 1. The described procedure is the gold standard for quantification of link prediction
performance (Lü et al 2015). Infigure 2, where the LCP-basedmodels demonstrate again clear superiority, we
provide the values obtained using the same procedure for estimation of anothermeasure called area under
precision recall curve (AUPR).While precision assesses the ability of eachmethod to rank the L removed edges
among the top L in the candidate list, AUPR assesses the ability to rank the L removed edges the highest possible
in the entire candidate list. For this reasonAUPR is considered amore complete and robust estimation of
performance (Yang et al 2014). In contrast, the area under the ROC curve has recently been proved to be very
deceptive in comparison toAUPR (Yang et al 2014), and it should be avoided in evaluation of link prediction.
Furthermore,figures 3 (A) and (B), shows themean precision andmeanAUPR across all networks. Taken
together, these results emphasize that LCP-basedmodels can significantly (p-value<0.001,figure 4) overcome
—at least in bipartite networks topologically similar to the ones considered here—state of the artmethods for
link prediction, offering 123% improvement in precision compared to classicalmodels, and 186%
improvement in precision compared to one-mode-projectionmethods (figures 4(A) and (C)). The performance
improvements evaluated according toAUPR are even larger (figures 4 (B) and (D)).

Traditionally, prediction of drug–target interactions using three-dimensionalmolecular structure
information is a hot topic in biophysics.Molecular docking is one of the preferredmodelling approaches,
however, it is only applicable when the ligand is a relatively smallmolecule in comparison to the receptor and/or
experimental data on the binding site are accessible (Valencia and Pazos 2002). In addition,molecular dynamics
simulations to further analyse obtained docking solutions are often needed in order to calculate the affinity
between twomolecules, which can be computationally expensive if a rigorous exploration of a large
conformational space is required (Valencia and Pazos 2002). Recently, it has been proven that buildingmachine
learning classifiers that integrate prior topological systemic knowledge (from the drug–target network

Figure 2. Link prediction evaluation based on themodels’ area under the precision recall curve (AUPR). TheAUPR indicates the
ability of eachmodel to prioritize the 10%of edges randomly removed from the original network in their candidate list. This operation
was repeated 100 times for each network and themeanAUPR and standard error for eachmethod are reported. Colours of the bars
define the class of the predictionmethods: LCP-based (red), classical (green), projection-based (black) and random (blue). Newly
proposedmethods (CAA,CRA,CAR,CPA, CJC, LCL, CN,AA, RA and JC) aremarked by awhite shine in their bar-plot and a ‘(N)’
underneath the name of the respectivemethod. Error bars represent the standard errors. The name, left and right node sizes of each
network are reported above each evaluation plot (A)–(F).
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