Network Science

#20 Link prediction

© 2020 T. Erseghe

Link Prediction

The link prediction task

Given a graph at time T, can we output a **ranked list** of links that are **predicted** to appear in the graph at time T+x ?

idea

We can build the list by using a measure of **similarity**/proximity between nodes

Applications

. . .

- Recommendation in **social** networks
- Finding experts and collaborations in academic social networks
- Reciprocal relationships prediction
- Network **completion** problem
- Social **tie** prediction

People You May Know

Link prediction problems

Wang, Xu, Wu, Zhou (2015) Link prediction in social networks: the state-of-the-art

https://link.springer.com/content/pdf/10.1007/s11432-014-5237-y.pdf

Link prediction techniques

Topology based techniques

Common neighbours

These **local** techniques are modification of a simple idea

Common neighbours - CN

The more neighbours in common, the more likely the link to appear

```
S_{CN}(i,j) = |N_i \cap N_j|
(the set of) neighbours of j
```


Resource allocation

 $S_{AB} = 1/5 + 1/2 + 1/4 = 19/20$

Resource allocation - RA

Punishes more heavily the **high-degree** common neighbours

AND THE

 $S_{RA}(i,j) = \sum 1/|N_k|$ $k \in N_i \cap N_i$

Adamic Adar

Adamic Adar - AA

Puts more **emphasis** on **less-connected** neighbours, which are more likely to make *i* and *j* meet together

 $S_{AA}(i,j) = \sum_{k \in N_i \cap N_j} 1 / \ln |N_k|$

 $S_{AB} = 1/ln(5) + 1/ln(2) + 1/ln(4)$

... but very many variations exist

Path based techniques

These **global** techniques are a generalization of CN to take into account the (very many) paths of **length** $\ell \ge 2$

S_{LP} =**A**² + β**A**³

Random walk based techniques

Some **global** techniques exploit the Local PageRank value

Random walk with restart - RWR $S_{RWR}(i,j) = p_{ij} + p_{ji}$

Random walk based techniques

Other exploit a pure Random Walk

Local random walk - LRW $S_{LRW}(i,j/t) = |N_i|p_{ij}(t) + |N_j|p_{ji}(t)$

Superposed random walk - SRW $S_{SRW}(i,j/t) = \sum_{u = 1...t} S_{LRW}(i,j/u)$

Ingredients Networks - Pasta

Elena Camuffo, Laura Crosara, Matteo Moro

pairings		CN	AA	$\mathbf{R}\mathbf{A}$	KA	LP	RW
Nutmeg	Fresh chilli	Х			Х	х	
Liquid fresh cream	Carrots	х			х	х	
Tomato sauce	Pine nuts	x			х	х	
Butter	Mussels	х			х	х	
Salt	Nduja						x
Pig cheek	Pumpkin		x				
Pig cheek	Ricotta cheese	x					
Sausage	Pecorino			х			
Whole milk	Beans			х			
Whole milk	Onions golden		Х		Х	Х	

pairings		CN	$\mathbf{A}\mathbf{A}$	RA	KA	\mathbf{LP}	RW
cheese	sesame	х			х	х	
macrophyll	bean			х			
salt	sweet sauce		х				x
cabbage	lemon			х			
lemon	mushrooms maitake			х			
chicken	vegetables			х			
cabbage	cheese parmigiano			х			
consomme	perilla	х			х	х	
egg	lemon	х		х	х	х	
bacon	vinegar	х			х	х	

ITALY

pairir	CN	AA	RA	KA	LP	RW	
fresh cream	chili	х		х	х	X	
black pepper	potato	х					
spices	bacon	х			х	x	
carrots	nuts		х				
canned tomatoes	pesto	Х			Х	Х	-
carrots	pesto		х				
salt	pig cheek						х
lemon juice	chicken broth		х				
rosemary	chicken broth			х			
fresh cream	sugar	х		х	Х	X	

TAIWAN

Ingredients Networks - Pasta

New Ingredient	Recipe
Black pepper	Durum wheat semolina, Water, Ricotta salata, Eggplant, Garlic,
	Vine-ripened tomatoes, Basil, Salt, Extra virgin olive oil
Vegetable broth	Semolina durum whole wheat, Water, Fresh onion, Mushrooms, Bacon,
	Cannellini beans, Rosemary, Extra virgin olive oil, Black pepper, Salt
apple	onion, anchovies, water, olive oil
Brandy	Chicken breast, Noodles, Potatoes, Snow peas, Carrots, Celery,
	Mushrooms, Leeks, Water, Fresh ginger, Parsley, Extra virgin olive oil, Black pepper, Salt
Almonds	streaky pork, durum wheat semolina, water, minced garlic,
	plum, cauliflower, mushroom, soft-boiled eggs, rice wine, salt, flour

New Ingredient	Recipe
mushroom	onion, meat, red wine, concentrated tomato paste, chicken broth, bay leaves,
	sugar, salt, durum wheat semolina, water, cheese, fresh thyme, black pepper
chia	streaky pork, durum wheat semolina, water,
	minced garlic, plum, cauliflower, mushroom, soft-boiled eggs, rice wine, salt, flour
cheese	durum wheat semolina, water, bacon, asparagus,
	shrimp, garlic, black pepper, rose salt, paprika, parsley leaf, cheese
basil leaves	durum wheat semolina, water, onion, cream, chicken breast, squid
avocado	durum wheat semolina, water, bacon, large tomatoes, green pepper, mushroom,
	cheese, ketchup, salt, black pepper

TAIWAN

New Ingredient	Recipe
consomme	durum wheat semolina, water, salmon, olives oil
tomato	onion, bacon, garlic, olives oil, cream, salt, cheese, durum wheat semolina, water, juice, nut
soy sauce	chicken, salt, durum wheat semolina, water, avocado, clams, mayonnaise, onion, cod roe
onion	durum wheat semolina, water, saury, salt
pepper	durum wheat semolina, water, salmon, olives oil

ITALY

Performance comparison

Lü, Zhou, "Link prediction in complex networks: A survey," 2011

https://www.sciencedirect.com/science/article/pii/S037843711000991X

Precision

Start from a friendship network with **active edges** *E*, and divide them into:

- a probe set P (a small subset of it)
- a **test** set *T* (the remaining edges)

Build the **similarity** values, S, by exploiting the test set *T*

Denote the inactive edges set with I

Precision

Percentage of the **top L links**, ranked according to the similarity measure S, that belong to the probe set P

AUC = Area under the ROC curve

receiver operating characteristic

AUC explained

Area under the curve

When using normalized units, the area under the curve (often referred to as simply the AUC) is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one (assuming 'positive' ranks higher than 'negative').

$$TPR(T) = \int_{T}^{\infty} f_{P}(x) dx$$
$$FPR(T) = \int_{T}^{\infty} f_{I}(x) dx$$
PDFs of P and I values

$$\begin{split} A &= \int_0^1 \text{TPR}(\text{FPR}^{-1}(x)) \ dx = \int_{-\infty}^{+\infty} \text{TPR}(T)\text{FPR}'(T) \ dT \\ &= \int_{-\infty}^{+\infty} \int_T^{\infty} f_P(x) f_I(T) \ dx \ dT \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} \eta(x > T) f_P(x) f_I(T) \ dx \ dT \\ &= P(S_P > S_I) \end{split}$$

AUC expression

Derive the probability that **similarity is larger in P than in I**, i.e., the probability that a correct estimate is obtained

AUC =
$$\sum_{p \in P, i \in I} \frac{(S(p) > S(i)?1:0)}{|P||/|}$$

AUC = 1 corresponds to a **perfect** classifier

I = inactive, P = probe, T = test

Performance - Neighbour

interaction	ein netwo	Uthors	D. US POI		^t oute.	air tran
	network	rk ships in	Sower Strid	tical blogs	Internet	SUSTERN
Indices	PPI	NS	Grid	PB	INT	USAir
CN	0.889	0.933	0.590	0.925	0.559	0.937
Salton	0.869	0.911	0.585	0.874	0.552	0.898
Jaccard	0.888	0.933	0.590	0.882	0.559	0.901
Sørensen	0.888	0.933	0.590	0.881	0.559	0.902
HPI	0.868	0.911	0.585	0.852	0.552	0.857
HDI	0.888	0.933	0.590	0.877	0.559	0.895
LHN1	0.866	0.911	0.585	0.772	0.552	0.758
PA	0.828	0.623	0.446	0.907	0.464	0.886
AA	0.888	0.932	0.590	0.922	0.559	0.925
RA	0.890	0.933	0.590	0.931	0.559	0.955

- 90% of edges in the test set *T*
- test set chosen at random
- average over 10 tests

Performance - Path

interaction	einprotein network	Outhorships in Ork science	Dower Stid	Cal blogs	router-level Internet	air transport. System
AUC	PPI	NS	Grid	РВ	INT	USAir
LP	0.970	0.988	0.697	0.941	0.943	0.960
LP*	0.970	0.988	0.697	0.939	0.941	0.959
Katz	0.972	0.988	0.952	0.936	0.975	0.956
LHN2	0.968	0.986	0.947	0.769	0.959	0.778
Precision	PPI	NS	Grid	PB	INT	USAir
LP	0.734	0.292	0.132	0.519	0.557	0.627
LP*	0.734	0.292	0.132	0.469	0.121	0.627
Katz	0.719	0.290	0.063	0.456	0.368	0.623
LHN2	0	0.060	0.005	0	0	0.005

... but very low precision values !!!!

- 90% of edges in the test set T
- test set chosen at random
- L=100 for precision

MIME.

WINNER IS... Kats for AUC

LP for precision

Performance – Random walk

AUC	CN	RA	LP	ACT	RWR	HSM	LRW	SRW
USAir	0.954	0.972	0.952	0.901	0.977	0.904	0.972(2)	0.978 (3)
NetScience	0.978	0.983	0.986	0.934	0.993	0.930	0.989(4)	0.992(3)
Power	0.626	0.626	0.697	0.895	0.760	0.503	0.953(16)	0.963 (16)
Yeast	0.915	0.916	0.970	0.900	0.978	0.672	0.974(7)	0.980 (8)
C.elegans	0.849	0.871	0.867	0.747	0.889	0.808	0.899(3)	0.906 (3)
Precision	CN	RA	LP	ACT	RWR	HSM	LRW	SRW
USAir	CN 0.59	RA 0.64	LP 0.61	ACT 0.49	RWR 0.65	HSM 0.28	LRW 0.64(3)	0.67 (3)
USAir NetScience	CN 0.59 0.26	RA 0.64 0.54	LP 0.61 0.30	ACT 0.49 0.19	RWR 0.65 0.55	HSM 0.28 0.25	LRW 0.64(3) 0.54(2)	0.67 (3) 0.54(2)
Precision USAir NetScience Power	CN 0.59 0.26 0.11	RA 0.64 0.54 0.08	LP 0.61 0.30 0.13	ACT 0.49 0.19 0.08	RWR 0.65 0.55 0.09	HSM 0.28 0.25 0.00	LRW 0.64(3) 0.54(2) 0.08(2)	0.67 (3) 0.54(2) 0.11(3)
Precision USAir NetScience Power Yeast	CN 0.59 0.26 0.11 0.67	RA 0.64 0.54 0.08 0.49	LP 0.61 0.30 0.13 0.68	ACT 0.49 0.19 0.08 0.57	RWR 0.65 0.55 0.09 0.52	HSM 0.28 0.25 0.00 0.84	LRW 0.64(3) 0.54(2) 0.08(2) 0.86(3)	SRW 0.67(3) 0.54(2) 0.11(3) 0.73(9)

... but simple RA/LP methods still behave very well !

Random walk methods

Adding a learning technique

Backstrom, Lescovec, "Supervised random walks: predicting and

recommending links in social networks," 2011

https://dl.acm.org/doi/pdf/10.1145/1935826.1935914

Supervised random walk - SRW

idea

In random walk with restart, we add **fractional weights** to the adjacency matrix **A**, and optimize them in order to find the best **fit** to the existent, i.e., we require S(*I*) < S(*P*) model $a_{ij} = \frac{1}{1 + e^{-<\beta} \psi}$

parameters vector, to be estimated via a best fit features vector, i.e., things we know about link *i-j*: when it was created, # of exchanged messages, # photos *i* and *j* appeared in, etc.

Facebook Island 2009 example

	Learning Method	AUC	Prec@20
	Random Walk with Restart	0.81725	6.80
	Degree	0.58535	3.25
Features.	DT: Node features 🏑	0.59248	2.38
	DT: Path features	0.62836	2.46
node	DT: All features	0.72986	5.34
• age, gender, degree	LR: Node features	0.54134	1.38
edge	LR: Path features	0.51418	0.74
	LR: All features	0.81681	7.52
· age of all euge	SRW: one edge type	0.82502	6.87
 communication 	SRW: multiple edge types	0.82799	7.57
 profile visits 		-	
 co-tagged photos 			

MIME.

WINNER IS...

Fraction of friending from PYMK

Bipartite graphs

Daminelli, Thomas, Duràn, Cannistraci, "Common neighbours and the local-community-paradigm

... bipartite networks," 2015

https://iopscience.iop.org/article/10.1088/1367-2630/17/11/113037/pdf

29

Problem

In **bipartite** graphs nodes sharing a common neighbour cannot be linked

in bipartite networks a friendof-a-friend <u>cannot</u> be a friend

idea

extend the idea of **2-hops neighbour** into that of **3hops neighbour**

Common neighbours set

Common neighbours - CN $S_{CN}(i,j) = |CN_{i,j}|$

Adamic Adar - AA $S_{AA}(i,j) = \sum_{k \in CN_{i,j}} 1 / \ln |N_k|$

Resource allocation - RA $S_{RA}(i,j) = \sum_{k \in CN_{i,j}} 1 / |N_k|$

Local community

CN index in **monopartite** networks predicts the likelihood of x,y interaction by counting the number of neighbours touched by the **triangles** that pass through the seed nodes CN index in **bipartite** networks predicts the likelihood of x,y interaction by counting the number of neighbours touched by the **quadrangles** that pass through the seed nodes

Local community degree

For each node k in the local community $CN_{i,j}$ identify the number of **neighbours** of k that belong to the **community**

 $g(k) = |CN_{i,j} \cap N_k|$

i.e., the # of local community links

Common neighbours - CAR $S_{CAR}(i,j) = \sum_{k \in CN_{i,j}} g(k)$

Adamic Adar - CAA $S_{CAA}(i,j) = \sum_{k \in CN_{i,j}} g(k) / \ln |N_k|$

Resource allocation - CRA $S_{CRA}(i,j) = \sum_{k \in CN_{i,j}} g(k) / |N_k|$

Performance

