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Robustness
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A.L. Barabási, Network science, http://barabasi.com/networksciencebook

Ch.8 “Network robustness”

http://barabasi.com/networksciencebook


Network robustness

3

q We are now interested in network 
robustness to failures

q Want to understand how real networks work 
under imperfect conditions/malfunctioning

e.g., why some mutations lead to diseases (biology & medicine)

stability of social networks to disruptive events (war, famine, etc)

robustness to occasional failures in telecom networks/the www

Oak, Quercus Robur à robust



Network robustness
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q Would the network still 
“work” in the presence 
of missing nodes?

q Failures can lead to 
either just isolating 
nodes or breaking the 
whole network apart

q What is the limit/phase 
transition?



Applications
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This can serve to identify:

q robustness of air transportation under random 
strikes

q robustness of social contacts even when 
someone is off 

q possibility of destroying of criminal/terror 
networks 

q eradication of an epidemics 



Percolation Theory
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Percolation theory
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q Pebbles are randomly 
paced, with probability p,
over a square lattice

q What is the average 
cluster size?

q What is the expected size 
of the largest cluster? 
(percolating cluster)

à Percolation theory 
predicts a sudden phase 
transition



Critical transition
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average cluster size
⟨s⟩ ∼ |p-pc|-$p

probability of belonging
to the largest cluster

P∞ ∼ (p-pc)%p

q Critical transition at pc ∼ 0.6
q Around pc small clusters grow and coalesce, 

leading to the emergence of a large cluster 

except for the 
giant component

$p = 43/18
%p = 5/36



Universality?
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q Value pc depends on the lattice type, and # of 
dimension

pc  = 0.593 for a 2D square lattice

pc  = 0.5 for a 2D triangular lattice

q Critical exponents !p and "p only depend on # of 
dimensions

average
distance 

inside clusters 
∼ |p-pc|-$p



Inverse percolation
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Can be also 
interpreted as 
inverse percolation 
(node removal)

f = 1-p
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Molloy-Reed Criterion
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Molloy-Reed criterion
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q The inhomogeneity ratio is ! = ⟨k2⟩ / ⟨k⟩
q A randomly wired network has a giant component 

if ! > 2 (this identifies a breaking point)
q Networks with ! < 2 lack a giant component

E.g.: in random networks ⟨k2⟩ = $2 + ⟨k⟩2 = ⟨k⟩ (1+⟨k⟩) 
so ! = 1+⟨k⟩ > 2 for ⟨k⟩ > 1
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Proof
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q To hold a GC together at least 2 links are needed 
per node (it formally is 2 -2/|GC| for tree
topology, the minimum one)

q That node i belongs to the GC can be derived 
recursively by asking iàj with j in the GC, ad we 
write iàjGC

q The average degree of the GC is ⟨ki| iàjGC ⟩ > 2

… we then work on ⟨ki| iàjGC ⟩

N = 7
L = 6



Proof (cont’d)
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q ⟨ki| iàjGC ⟩ = ∑   ki P(ki| iàjGC )

q P(ki| iàjGC ) = P(iàjGC|ki) P(ki) / P(iàjGC ) by Bayes’ 
rule

q P(iàjGC|ki) = ki (G-1)/(N-1) since there are          
(G-1)/(N-1) random chances to connect to the GC, 
an ki trials

q Then P(iàjGC) = ⟨k⟩ (G-1)/(N-1)

q Hence ⟨ki| iàjGC ⟩ = ∑   ki2 P(ki) / ⟨k⟩ = ⟨k2⟩ / ⟨k⟩
ki

ki

reliable approximation for low G, i.e., close to the breaking point



Robustness of scale-free networks
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Robustness of scale-free nets
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q Robustness of the Internet
due to scale-free 
properties

q Nodes linked to the GC 
after random removal with 
rate f à still large if f<1 

q Experiments aligned with a 
scale-free model

q Reason: random removal of 
(many) hubs is very unlikely

very high break-up 
threshold

GC
 fr

ac
tio

n
GC

 fr
ac

tio
n



Inhomogeneity ratio under removal
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q Assume a network with arbitrary degree 
distribution pk and node removal at rate f

q It is ⟨k⟩f = (1-f) ⟨k⟩
and ⟨k2⟩f = (1-f)2 ⟨k2⟩ + f(1-f)⟨k⟩

q Hence the inhomogeneity ratio # f = f + (1-f) #



Sketch of the proof
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q Probability that a node of degree k turns into a 
node of degree m

P(kàm) = binom(k,m) f k-m (1-f)m

m links 
are kept

k-m links 
are deleted

the trick is to swap the order of sums

q Then P(m) = ∑    P(kàm) pk

q ⟨k⟩f = ∑  m P(m)
q ⟨k2⟩f = ∑  m2 P(m) where m2 = m(m-1) + m

… then just replace and do boring substitutions

m 

k≥m

m 

counting the 
# of cases

f can be fraction of deleted nodes/links



Breaking point
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the lower !, 
the higher fc

2

4 3
enhanced 

robustness

weaker 
network

GC
 fr

ac
tio

n

q Assume a network with arbitrary degree 
distribution pk and node removal at rate f

q The breaking point
is found 
at " f = f + (1-f) " = 2

q The breaking point is
fc =  1 – 1/("-1) which 

solely depends on the degree distribution



Some implications
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q networks with big hubs (causing wide deviations 
from ⟨k⟩) are hard to die

q in random networks fc = 1 – 1/⟨k⟩, i.e., large 
average degrees strengthen the network

q in scale-free networks the exponent # sets the 
network robustness



Attacks
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Attack tolerance
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q What if removals are not by chance, but caused by 
an adversary with sufficient insights on our 
network? 

an adversary would 
remove all hubs first, i.e., 
it removes nodes in 
decreasing order of their 
degree

probability/percentage of removed nodes
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Fragility of scale-free nets
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q Scale-free networks are not very robust to targeted 
attacks exactly because they have vulnerable hubs

q Recall that fc = 1- 1/(!-1) meaning that robustness 
depends on !, and removing hubs reduces !

q good news in medicine (vulnerability of bacteria) 
J

q bad news for the Internet L



Breaking point in scale-free nets
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estimated value

Not robust to random 
failures (exponential 
degree distribution)



Fragility of scale-free nets
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non monotonic behaviour here

random failures & 
attacks have similar 
behaviour here



Analysis of an attack
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An attack reduces kmax à k’max

q Degree distribution
pk= C k -! , C = (ɣ -1) / (kmin

1-ɣ - kmax
1-ɣ)

q Percentage of removed nodes is 
f = ∫      pk dk = C/(ɣ -1) (k’max

1-ɣ - kmax
1-ɣ)

q Hence k’max = kmin f -1/(ɣ-1)

k’max

kmax



Fraction of removed links
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q The fraction a of removed links is a = b / ⟨k⟩
where

b = ∫      k pk dk = C/(ɣ -2) (k’max
2-ɣ - kmax

2-ɣ )

⟨k⟩ = ∫      k pk dk = C/(ɣ -2) (kmin
2-ɣ - kmax

2-ɣ )

q Hence a = (k’max/kmin) 2-ɣ =  f (ɣ-2)/(ɣ-1)

k’max

kmax

kmin

kmax



Final proof
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An attack distorts the degree distribution pk à p’k
q We assume that links were randomly assigned, 

so that if a is the fraction of removed links, then
p’m = ∑ binomial(k,m) ak-m (1-a)m pk

k’max

k=m
transition probability P(kàm)

q As a consequence 

!f = a + (1-a) !’ 
!’ = kmin (ɣ-2)/(ɣ-3) (f (ɣ-3)/(ɣ -1) - 1)/(f (ɣ-2)/(ɣ -1) - 1) 

q Set !f = 2 to obtain the equation 

Same as before but f à a = f (ɣ-2)/(ɣ -1) 

and kmax = kmin N 1/(ɣ-1) à k’max = kmin f -1/(ɣ-1)



Optimizing robustness
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Optimizing robustness
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An early attempt by Paul Baran [1959] 

scale-free



Optimizing robustness
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The best option is a 
bimodal distribution

pk = r !kmax + (1-r) !kmin

But not always possible 
to implement it in 
practice (mainly for   
cost reasons)

r = 1/N
kmax chosen to 
maximize the 
breakpoints



Analysis
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Random failure - Assume pk = r !kmax + (1-r) !kmin

q Average degree ⟨k⟩ = r kmax + (1-r) kmin

q Inhomogeneity ratio $ = (r kmax
2 + (1-r) kmin

2)/⟨k⟩
q Breakpoint fc = 1- 1/($-1) 

Attack – Assume that all hubs are removed (f > r) 
and that only nodes of degree kmin are surviving

q Fraction of removed links a = 1 - kmin(1-f)/⟨k⟩
q $f = a + (1-a) $’ with $’ = kmin

q Breakpoint fc = 1- ⟨k⟩/(kmin(kmin -1))



Application example
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Network analysis of Tweets’ sentiment
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Salvatore Romano, Alberto Zancanaro, Enrico Lanza, Carlo Facchin

Robustness of original network to positive node removal

negative feelings

positive feelings



Network analysis of Tweets’ sentiment
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Robustness of original network to positive node removal



Questions ?
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