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Cho & MuLee (2010)
Authority-shift clustering: Hierarchical clustering by authority seeking on graphs

https://ieeexplore.ieee.org/abstract/document/5540081

https://ieeexplore.ieee.org/abstract/document/5540081
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Idea
q Connect a node towards the strongest direction in the 

Local PageRank sense

q Iterate the process 
recursively as with Louvain

q Stop if no increase in                                                
modularity

select strongest Local 
Pagerank directions



Characteristics
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qImplements modularity optimization
qScalable (low complexity)
qEffective
qLocal PageRank can be efficiently calculated
qNot a greedy technique
qEasily extendable to networks with signs
qNo parameters to be set



Authority ShiftLouvain

Brain Network Example
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AUD = auditory
CCN = cognitive control
CON = cingulo-opercular
DAN = dorsal attention
DMN = default mode

FPN = fronto-parietal
FRN = feedback-related negativity
LANG = language
SMN = somato-motor
VIS = visual



Authority Shift – Subjects Clusters 
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Louvain – Subject Clusters 
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Clique percolation
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¡ Two	nodes	belong	to	the	same	community	if	
they	can	be	connected	through	adjacent	k-
cliques:

11/28/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 8

4-clique

Adjacent 4-cliques

Communities for k=4

[Palla et al., ‘05]

Non-adjacent 4-cliques

Clique percolation
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Idea
q Two nodes belong to the same community if they can be 

connected through adjacent k cliques

k clique
q Fully connected graph of k nodes
Adjacent k cliques
q Overlap in k-1 nodes



Clique percolation
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11/28/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 10

(1) Graph (2) Clique overlap 
matrix

(3) Thresholded
matrix at 3

(4) Communities
(connected components)

¡ Start	with	graph
¡ Find	maximal	
cliques

¡ Create	clique	
overlap	matrix

¡ Threshold	the	
matrix	at	value	k-1
§ If !"# < % − 1 set	0

¡ Communities	are	
the	connected	
components	of	
the	thresholded
matrix

Cliques

C
liq

ue
s

Overlap 
size

(1) identify cliques

(2) Build a clique 
overlap matrix

(3) Set a threshold 
(the one providing the 
richest community 
structure = most widely 
distributed cluster sizes)

overlap in 2 nodes
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Yang & Leskovec (2013)
Overlapping community detection at scale: a nonnegative matrix factorization approach

https://dl.acm.org/doi/pdf/10.1145/2433396.2433471?casa_token=ENfVUy8WEaUAAAAA:DDh024Jw5
wchw69gYXm3BR3NRKDBjiDNz0pXRoJAWTKQD6HyT1iMRvc64WcclS7GLAAj30I-6Kiu

https://dl.acm.org/doi/pdf/10.1145/2433396.2433471?casa_token=ENfVUy8WEaUAAAAA:DDh024Jw5wchw69gYXm3BR3NRKDBjiDNz0pXRoJAWTKQD6HyT1iMRvc64WcclS7GLAAj30I-6Kiu
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Affiliation graph model (AGM)
q Nodes N
q Communities C

q Membership matrix M, binary |N|x|C| matrix
q Probability p = [pc] that a connection is active
q Probability that edge (i,j) is not active Qij =     ∏    (1-pc)
q Q = exp(-M diag(q) MT)  , q = -log(1-p) > 0

c ∈Mi⋂Mj



BigCLAM
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Target function  f =  ∏  (1-Qij)    ∏  Qij

Recall that Q = exp(-M diag(q) MT)

Want to maximize f w.r.t. M binary and q > 0

q This is a maximum likelihood estimator (best fit in 
probability)

q Needs to know in advance the # of communities |C|

q Very difficult to solve exactly – NP-complex

(i,j) ∈ " (i,j) ∉ "
active edges " is a 

known data



BigCLAM
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Idea: give mebership M a strength = relaxation !!!  

Target function  f =  ∏  (1-Qij)    ∏  Qij

s. to  Q = exp(-MMT)   and   M > 0

Can be solved using 
gradient descent methods

(i,j) ∈ " (i,j) ∉ "
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Measures

Normalized Mutual Information
Number of Communities

-index
F1-score
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Figure 7: Performance of detecting ground-truth communities. While being 10 to 100 times faster than competing approaches
BIGCLAM also achieves overall best performance in the “accuracy” of detected communities.
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Measures Community QualityOverlap Quality Overlap Coverage Community Coverage
Methods B BIGCLAML Link Clustering C Clique Percolation Mixed-Membership Stochastic Block ModelsM

Network N E

PPI (Y2H) 1,647 2,518
PPI (AP/MS) 1,004 8,319
PPI (LC) 1,213 2,556
PPI (All) 1,647 12,784
Metabolic 1,042 8,756
Philosophers 1,218 5,972
Word Association 5,018 55,232

Figure 8: Experiments on the data and evaluation metrics used in Ahn et al. [1]. N : Number of the nodes, E: Number of the edges.

Since l1 regularization introduces sparsity to matrix F , we only
need to keep track of latent factors with non-zero value, which de-
creases the memory requirements of our method. We use λ = 10
for Amazon, Youtube, and DBLP and λ = 5000 for LiveJournal.
We update Fu (Solving Eq. 3) for multiple nodes in parallel. With
20 threads, it takes about one day to fit BIGCLAM to the LiveJour-
nal network (4M nodes, 35M edges).

As our baselines from the previous experiments do not scale to
these networks, we consider two well-known graph partitioning
methods as baselines: Metis [16] and Graclus [6]. For Graclus
and Metis, we set the number of communities to detect K to be
the number of ground-truth communities and use the same K for
BIGCLAM as well.

Similarly to experiments in Figure 7, we measure the accuracy
of detected communities using F-1 score and Omega index (NMI
is omitted as all the methods perform the same). Moreover, notice
that grund-truth communities in our data are partially annotated as
some nodes might not indicate their memberships.This means it is
important to quantify the Recall of a given method. We define Re-
call as the average Recall of best-matching detected communities:

Recall(C∗, Ĉ) =
1

|C∗|
∑

Ci∈C∗

Rc(Ci, ˆCg(i))

where Rc(Ci, Ĉj) is the recall of Ĉj under the best matching g.
Since the two baselines (Graculus and Metis) perform very sim-

ilarly in all metrics, we take just the best value among the two in
each case rather than showing the result of baselines separately. For
each network and each score, we pick the best score x among the
two baselines and compute the relative improvement of BIGCLAM

over the x, i.e., Score(BIGCLAM)−x
x . Table 2 shows the relative im-

provement of BIGCLAM over the baselines. For example, 0.21 for

Dataset Ω-Index F-1 Recall
LiveJournal 2.70 0.21 0.43
Youtube 1.60 0.39 0.82
Amazon 0.00 0.00 0.23
DBLP 0.10 0.03 0.29
Average 1.10 0.16 0.44

Table 2: Relative improvement of BIGCLAM over Metis and
Graclus in detecting communities in large scale networks. Pos-
itive value indicates that BIGCLAM outperforms the baselines.

F-1 in LiveJournal means that BIGCLAM achieves 21% higher F-1
score than the best baseline (Metis in this case).

Overall, BIGCLAM outperforms the baselines in nearly all cases.
On average, BIGCLAM achieves 110% higher Omega index, 16%
higher F-1 score, and 44% higher average Recall, which means that
BIGCLAM achieves 57% relative improvement on average among
the three scores. Furthermore, BIGCLAM outperforms the base-
lines in every measure and every network. The absolute value of
the scores of BIGCLAM is 0.11 (Omega index), 0.13 (F-1 score),
and 0.32 (Recall). Overall, the results emphasize the need for a
scalable and accurate overlapping community detection method as
graph partitioning methods fail to detect overlapping communities.
Results demonstrate that BIGCLAM could be the needed solution.

7. CONCLUSION
In this paper we developed a novel large scale community detec-

tion method that accurately discovers the overlapping community
structure of real-world networks. We identified a set of networks
where nodes explicitly state their ground-truth community mem-
bership and studied the connectivity of ground-truth communities
and their overlaps. We observed that the overlaps of communi-
ties are more densely connected than the non-overlapping parts of
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Figure 7: Performance of detecting ground-truth communities. While being 10 to 100 times faster than competing approaches
BIGCLAM also achieves overall best performance in the “accuracy” of detected communities.
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Since l1 regularization introduces sparsity to matrix F , we only
need to keep track of latent factors with non-zero value, which de-
creases the memory requirements of our method. We use λ = 10
for Amazon, Youtube, and DBLP and λ = 5000 for LiveJournal.
We update Fu (Solving Eq. 3) for multiple nodes in parallel. With
20 threads, it takes about one day to fit BIGCLAM to the LiveJour-
nal network (4M nodes, 35M edges).

As our baselines from the previous experiments do not scale to
these networks, we consider two well-known graph partitioning
methods as baselines: Metis [16] and Graclus [6]. For Graclus
and Metis, we set the number of communities to detect K to be
the number of ground-truth communities and use the same K for
BIGCLAM as well.

Similarly to experiments in Figure 7, we measure the accuracy
of detected communities using F-1 score and Omega index (NMI
is omitted as all the methods perform the same). Moreover, notice
that grund-truth communities in our data are partially annotated as
some nodes might not indicate their memberships.This means it is
important to quantify the Recall of a given method. We define Re-
call as the average Recall of best-matching detected communities:

Recall(C∗, Ĉ) =
1

|C∗|
∑

Ci∈C∗

Rc(Ci, ˆCg(i))

where Rc(Ci, Ĉj) is the recall of Ĉj under the best matching g.
Since the two baselines (Graculus and Metis) perform very sim-

ilarly in all metrics, we take just the best value among the two in
each case rather than showing the result of baselines separately. For
each network and each score, we pick the best score x among the
two baselines and compute the relative improvement of BIGCLAM

over the x, i.e., Score(BIGCLAM)−x
x . Table 2 shows the relative im-

provement of BIGCLAM over the baselines. For example, 0.21 for

Dataset Ω-Index F-1 Recall
LiveJournal 2.70 0.21 0.43
Youtube 1.60 0.39 0.82
Amazon 0.00 0.00 0.23
DBLP 0.10 0.03 0.29
Average 1.10 0.16 0.44

Table 2: Relative improvement of BIGCLAM over Metis and
Graclus in detecting communities in large scale networks. Pos-
itive value indicates that BIGCLAM outperforms the baselines.

F-1 in LiveJournal means that BIGCLAM achieves 21% higher F-1
score than the best baseline (Metis in this case).

Overall, BIGCLAM outperforms the baselines in nearly all cases.
On average, BIGCLAM achieves 110% higher Omega index, 16%
higher F-1 score, and 44% higher average Recall, which means that
BIGCLAM achieves 57% relative improvement on average among
the three scores. Furthermore, BIGCLAM outperforms the base-
lines in every measure and every network. The absolute value of
the scores of BIGCLAM is 0.11 (Omega index), 0.13 (F-1 score),
and 0.32 (Recall). Overall, the results emphasize the need for a
scalable and accurate overlapping community detection method as
graph partitioning methods fail to detect overlapping communities.
Results demonstrate that BIGCLAM could be the needed solution.

7. CONCLUSION
In this paper we developed a novel large scale community detec-

tion method that accurately discovers the overlapping community
structure of real-world networks. We identified a set of networks
where nodes explicitly state their ground-truth community mem-
bership and studied the connectivity of ground-truth communities
and their overlaps. We observed that the overlaps of communi-
ties are more densely connected than the non-overlapping parts of
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6.1 Experiments on synthetic networks
Using synthetic networks we investigate the scalability and con-

vergence of the BIGCLAM optimization problem.

Convergence of BIGCLAM. Non-negative matrix factorization is
non-convex which means that gradient based approaches do not
guarantee to find an optimal solution. To verify that our fitting
algorithm does not suffer too much from local optima, we conduct
the following experiment on synthetic networks. We generated 100
synthetic networks using the AGM model [35]. For each of these
networks, we then fit BIGCLAM using 10 different random starting
points and attempt to recover the true community affiliations.

In 98% of cases our fitting algorithm finds true communities
with reliable accuracy (F1-score of node community memberships
higher than 0.85), and in 27% of cases our algorithm discovers the
communities almost perfectly (F1-Score > 0.95). This result sug-
gests that the optimization space has several local optima which
almost equivalent to the global optimum.

Scalability of BIGCLAM. We also evaluate the scalability of BIG-
CLAM by measuring the running time on the networks of increas-
ing sizes.For comparison, we compare the runtime of the following
overlapping community detection methods:

• NMF: Least squares non-negative matrix factorization. We solve
the following problem: argmaxFuk≥0 ||A−F ·F T ||F where A
is an adjacency matrix of a given network. We used a projected
gradient descent as we do with BIGCLAM.

• BIGCLAM(Naive): BIGCLAM without the optimization in Eq. 4.

• LC: Link Clustering method [1].

• CPM: Clique Percolation method [25].

• MMSB: Mixed-Membership Stochastic Blockmodel [2].

Link Clustering, Clique Percolation Method and Mixed Mem-
bership Stochastic Blockmodels are considered the state-of-the-art
overlapping community detection methods. We used the imple-
mentation of LC and CPM in the Stanford Network Analysis Plat-
form2. For MMSB we used publicly-available ‘LDA’ R package.
For CPM, we use the clique size k = 5 for CPM. For MMSB,
we set the number of communities to detect to K = 10. We also
consider NMF and BIGCLAM (Naive) so that we can compare the
performance gain due to the optimization described in Eq. 4.

Figure 5 shows the results. NMF, BIGCLAM(Naive) and MMSB
scale to networks of around 1,000. LC and CPM scale to networks
of about 10,000 and then their runtime becomes prohibitively large.
On the other hand BIGCLAM can process networks with hundreds
of thousands of nodes within 20 minutes. This means that BIG-
CLAM can easily process networks 10 to 100 times larger than
other approaches (and while also more accurately detecting com-
munities). Last, note that the optimization of BIGCLAM defined
in Eq. 4 speeds up the algorithm for around 100 times and is thus
essential for making BIGCLAM scale to large networks.

6.2 Experiments using real ground-truth
We also examine the performance of BIGCLAM using the 6 net-

works with ground-truth communities that we described in Sec-
tion 3. In these networks nodes explicitly state their ground-truth
community memberships which allows us to quantify the ‘accu-
racy’ of community detection methods by evaluating the level of
correspondence between detected and ground-truth communities.
Experimental setup. We are given an unlabeled undirected net-
work G (with known ground-truth communities C∗) we aim to dis-

2SNAP: http://snap.stanford.edu/snap
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Figure 5: Algorithm runtime comparison. BIGCLAM runs 10
to 100 faster than competing approaches.

Figure 6: Sampling subnetworks of G.

cover communities Ĉ such that discovered communities Ĉ closely
match the ground-truth communities C∗.

Even though our algorithm can process the networks described
in Table 1, all the baseline methods do not scale to networks of
such size. To allow for comparison between our and the baseline
methods we use the following evaluation scenario where the goal
is to obtain a large set of relatively small subnetworks with over-
lapping community structure. To obtain one such subnetwork we
pick a random node u in the given graph G that belongs to at least
two communities. We then take the subnetwork to be the induced
subgraph of G consisting of all the nodes that share at least one
ground-truth community membership with u. Figure 6 illustrates
how a subnetwork (right) is created from G(V,E) (left) based on
the red node u. Note that on average 95% of all ground-truth com-
munities overlap which means that this procedure does not bias
towards overlapping communities. In our experiments we created
500 different subnetworks for each of the six datasets.
Baselines for comparison. For baselines we choose three most
prominent overlapping community detection methods: Link clus-
tering (LC) [1], Clique Percolation Method (CPM) [25], and the
Mixed-Membership Stochastic Block Model (MMSB) [2].

These methods have a number of parameters that need to be set.
For CPM, we set the clique size k = 5 since the number of commu-
nities discovered by CPM with k = 5 best approximates the true
number of communities. For MMSB, we have to set the number of
communities K as an input parameter. We use the Bayes Informa-
tion Criterion to choose K. While we require “hard” community
memberships, MMSB returns stochastic node memberships to each
of the K communities. Thus, we assign a node to a community if
the corresponding stochastic membership is non-zero. We also con-
sidered Infomap [27], which is the-state-of-the-art non-overlapping
community detection method. We omit the results as the perfor-
mance of the method was not competitive.

Evaluation metrics. The availability of ground-truth communi-
ties allows us to quantitatively evalute the performance of commu-
nity detection algorithm. Without ground-truth such evaluation is
simply not possible. For evaluation we use metrics that quantify
the level of correspondence between the detected and the ground-
truth communities. Given a network G(V, E), we consider a set of
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