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Grouping as graph partitioning

good partition

Jd We want to partition an (undirected) graph in two
disjoint groups

J A good partition is one that
maximizes the # of within-group connections
minimizes the # of between-group connections

MiIiME.



Grouping as graph partitioning

cut(A, B) =2
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1 We define an objective function that expresses
the amount of edge cuts of a partition

cut(A,B)= > a;
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Minimum cut criterion

Minimize weight connections between groups by
looking for partitions A and B that minimize cut(A,B)

“Optimal cut”
/ Minimum cut

(d Favours cutting small sets of isolated nodes (degenerate cuts)
(d Only considers external cluster connections
(J Does not consider internal cluster connections
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Normalized cut

(J Normalized cut

cut(A,B) + cut(B,A)

Ncut(A,B) =
cut(A,B) assoc(A) assoc(B)

—

(J Normalized cut criterion

Minimize weight connections between groups by
looking for partitions A and B that minimize Ncut(A,B)

Produces more balanced partitions
Avoids single nodes, Ncut=1/1 + 1/(L-1) = L/(L-1) = 1
But computing the optimum is NP-hard
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Generalizations

K

. . . Ai’ A'C
1 Multiple communities Ncut = Z C;l;s;(oc(A°l))

=1

d Conductance ¢(S) = cut(S,S¢) / min(assoc(S), assoc(S¢))
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Spectral clustering

Shi and Malik, “Normalized cuts and image segmentation," 2000
Ng, Jordan, Weiss, "On spectral clustering: analysis and an algorithm," 2002
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Ncut with two communities

Find the best partition by minimizing

community membership\ / Laplacian matrix
(binary) signal —— gl | s L = diag(d) —A
D? — (s'd)?
- D?~(s'dy
total degrees degree vector
D=1d=2L d=A 1

d Computing the optimum is NP-hard
(d We need a suboptimum but simpler approach
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Ncut with two communities

Find the best partition by investigating

L,=D%-L-D%=|I-D%-A-D*
Normalized/ \

. . degree matrix
Laplacian matrix &

D = diag(d)

We look for the eigen-structure of L,
L, is positive semidefinite with22A4;,24,2...24,,24,=0
We assume a connected network where 4,.;>0

U000

We are interested in the algebraic connectivity 4,_; and in
the corresponding eigenvector x,._; a.k.a. Fiedler vector

o

Community membership corresponds to the signs of x,.;

MIiME.



Historical note — Fiedler’s algorithm

Czechoslovak Mathematical Journal, 23 (98) 1973, Praha

1 Fiedler, Algebraic connectivity of graphs, 1973

ALGEBRAIC CONNECTIVITY OF GRAPHS*)

MirosLAv FIepLER, Praha

(Received April 14, 1972)

I. INTRODUCTION

Let G = (V. E) be a non-directed finite graph without loops and multiple edges.
Having chosen a fixed ordering w,, w, ..., w, of the set ¥, we can form a square
n-rowed matrix 4(G) whose off-diagonal entries are ag = ay; = —1if (w, w)eE

and a; = 0 otherwise and whose diagonal entries a;; are equal to the valencies of
the vertices w,. This matrix A(

teann AL dlan L

G), which is frequently used to enumerate the spanning

 Identify the Fiedler vector x,_; of L corresponding to

algebraic connectivity A4,_; > 0 and derive two communities
according to the signs of x,;

(d But the normalized Laplacian matrix works much better
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provide a more stable
representation

13



MIiME.

16

15
([ ]

13

b V2

we obtain a finer
partitioning if a multi-
dimensional
representation is used
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Another example
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Spectral clustering

On vectors v,

X; are eigenvectors of L,

As such they satisfy D % L D * x;= A, x;

We replace v,= D * x;

We obtain D1 Lv; = A,v,

v; are the (right) eigenvectors of matrix| D1 L=1- D"l A

It is Ay = 0 and v, = 1 by construction, /
but we are not interested in it

D 0000 D

normalized adjacency matrix M
-- looks like the random walk of
PageRank
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Spectral clustering algorithm

Ng, Jordan, Weiss, «On spectral clustering: analysis and an algorithm» [2002]

1. Pre-processing
d  Construct a matrix representation A of the graph
J A can have non-binary weights
d Derive the normalized Laplacian L;

2. Decomposition

 Identify K eigenvectors x, of L; corresponding to the smallest K
eigenvalues Ay.;, Ay, o) Ak

d Realign eigenvectors v, = D x, and normalize them to ||v|| = 1

J Map each vertex to a lower dimensional representation given
by the rows of matrix [vy.;, Vaoa, s Vi]

3. Grouping

J  Assign points to one or more clusters based on the new
representation, e.g., using signs, or more elaborate clustering
techniques (k-means, EM, etc.)
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Why multiple eigenvectors?

1 Much more stable (and less expensive)
than recursive bisection methods

1 Approximate the optimal cut
K

cut(A;, AY)
Ncut = !
‘i Z assoc(A;)

(1 Communities are better separated
1 Emphasizes cohesive clusters

v" Increases the unevenness in the
distribution of data

v Associations with similar points are
amplified

v" The data begins to approximate a
clustering

v" Well separated spaces
MiME.
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How to select the # of eigenvectors?

The eigengap heuristic
1 Choose the number K of eigenvectors such that
1 The eigenvalues 4.4, A\, ..., Ay are small

d The eigengap | Ay — Ank | is large
Aj Ak

>
1.8 ®
1.6 .
1.4 H °
1.2 1
lcutonly: = = = - - 1 °
0.8 ® o
0.6 °
0.4 — e
0.2 g
1 1 1 1 1 1 1 4 >
2 4 6 8 10 12 14 16 /

MiME. 19




How good is the clustering result?

Chung, "Laplacians of graphs and Cheeger’s inequalities," 1996

Some basic inequalities

d Ay, < N/(N-1) with equality for a complete graph
d A,;<1when the graph is not complete

d A;2N/(N-1)

Cheeger’s inequality (1970 small algebraicII ,
connectivity = small hg
O % Ay < he < (2433)"

1 Cheeger’s constant h; = min, ¢(A)

/

approximate value (upper bound)
of the target function —small hg
means good clustering
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Questions ?




