Network Science

#13 Conductance

© 2020 T. Erseghe

Conductance

Grouping as graph partitioning

- We want to partition an (undirected) graph in two disjoint groups
- A good partition is one that
 maximizes the # of within-group connections
 minimizes the # of between-group connections

Grouping as graph partitioning

■ We define an objective function that expresses the amount of edge cuts of a partition

$$\operatorname{cut}(A,B) = \sum_{i \in A, j \in B} a_{ij}$$

Minimum cut criterion

Minimize weight connections between groups by looking for partitions A and B that minimize cut(A,B)

- Favours cutting small sets of isolated nodes (degenerate cuts)
- Only considers external cluster connections
- Does not consider internal cluster connections

Normalized cut

■ Normalized cut

Ncut(A,B) =
$$\frac{\text{cut}(A,B)}{\text{assoc}(A)}$$
 + $\frac{\text{cut}(B,A)}{\text{assoc}(B)}$

Normalized cut criterion

Minimize weight connections between groups by looking for partitions A and B that minimize Ncut(A,B)

- Produces more balanced partitions
- \square Avoids single nodes, Ncut = $1/1 + 1/(L-1) = L/(L-1) \approx 1$
- But computing the optimum is NP-hard

Example

Generalizations

Multiple communities
$$Ncut = \sum_{i=1}^{K} \frac{cut(A_i, A_i^c)}{assoc(A_i)}$$

 \square Conductance $\phi(S) = \text{cut}(S,S^c) / \text{min(assoc}(S), assoc}(S^c))$

Spectral clustering

Shi and Malik, "Normalized cuts and image segmentation," 2000 Ng, Jordan, Weiss, "On spectral clustering: analysis and an algorithm," 2002

Ncut with two communities

Find the best partition by minimizing

- Computing the optimum is NP-hard
- ☐ We need a suboptimum but simpler approach

Ncut with two communities

Find the best partition by investigating

$$L_{1} = D^{-\frac{1}{2}} \cdot L \cdot D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}} \cdot A \cdot D^{-\frac{1}{2}}$$
Normalized

degree matrix
$$D = \text{diag}(d)$$

- \square We look for the eigen-structure of L_1
- \Box L_1 is positive semidefinite with $2 \ge \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_{N-1} \ge \lambda_N = 0$
- We assume a connected network where $\lambda_{N-1} > 0$
- We are interested in the algebraic connectivity λ_{N-1} and in the corresponding eigenvector \mathbf{x}_{N-1} a.k.a. Fiedler vector
- \square Community membership corresponds to the signs of \mathbf{x}_{N-1}

Historical note – Fiedler's algorithm

Czechoslovak Mathematical Journal, 23 (98) 1973, Praha

☐ Fiedler, Algebraic connectivity of graphs, 1973

ALGEBRAIC CONNECTIVITY OF GRAPHS*)

Miroslav Fiedler, Praha (Received April 14, 1972)

1. INTRODUCTION

Let G = (V, E) be a non-directed finite graph without loops and multiple edges. Having chosen a fixed ordering $w_1, w_2, ..., w_n$ of the set V, we can form a square n-rowed matrix A(G) whose off-diagonal entries are $a_{ik} = a_{ki} = -1$ if $(w_i, w_k) \in E$ and $a_{ik} = 0$ otherwise and whose diagonal entries a_{ii} are equal to the valencies of the vertices w_i . This matrix A(G), which is frequently used to enumerate the spanning

- Identify the Fiedler vector \mathbf{x}_{N-1} of \mathbf{L} corresponding to algebraic connectivity $\lambda_{N-1} > 0$ and derive two communities according to the signs of \mathbf{x}_{N-1}
- But the normalized Laplacian matrix works much better

Example

Example

Another example

Spectral clustering

- On vectors \mathbf{v}_i
- \square \mathbf{x}_i are eigenvectors of \mathbf{L}_1
- As such they satisfy $D^{-1/2} L D^{-1/2} x_i = \lambda_i x_i$
- \Box We replace $\mathbf{v}_i = \mathbf{D}^{-1/2} \mathbf{x}_i$
- We obtain $\mathbf{D}^{-1} \mathbf{L} \mathbf{v}_i = \lambda_i \mathbf{v}_i$
- \Box \mathbf{v}_i are the (right) eigenvectors of matrix $\mathbf{D}^{-1} \mathbf{L} = \mathbf{I} \mathbf{D}^{-1} \mathbf{A}$
- It is $\lambda_N = 0$ and $\mathbf{v}_N = \mathbf{1}$ by construction, but we are not interested in it

normalized adjacency matrix *M*-- looks like the random walk of
PageRank

Spectral clustering algorithm

techniques (k-means, EM, etc.)

Ng, Jordan, Weiss, «On spectral clustering: analysis and an algorithm» [2002]

1.	Pre-processing	
		Construct a matrix representation A of the graph
		A can have non-binary weights
		Derive the normalized Laplacian \boldsymbol{L}_1
2.	Decomposition	
		Identify K eigenvectors \mathbf{x}_k of \mathbf{L}_1 corresponding to the smallest K eigenvalues λ_{N-1} , λ_{N-2} ,, λ_{N-K}
		Realign eigenvectors $\mathbf{v}_k = \mathbf{D}^{-1/2} \mathbf{x}_k$ and normalize them $to \mathbf{v}_k = 2$
		Map each vertex to a lower dimensional representation given by the rows of matrix [v_{N-1} , v_{N-2} ,, v_{N-K}]
3.	Grouping	
		Assign points to one or more clusters based on the new representation, e.g., using signs, or more elaborate clustering

Why multiple eigenvectors?

- Much more stable (and less expensive) than recursive bisection methods
- Approximate the optimal cut

$$Ncut = \sum_{i=1}^{K} \frac{cut(A_i, A_i^c)}{assoc(A_i)}$$

- Communities are better separated
- Emphasizes cohesive clusters
 - ✓ Increases the unevenness in the distribution of data
 - Associations with similar points are amplified
 - ✓ The data begins to approximate a clustering
 - ✓ Well separated spaces

How to select the # of eigenvectors?

The eigengap heuristic

- Choose the number K of eigenvectors such that
 - \square The eigenvalues λ_{N-1} , λ_{N-2} , ..., λ_{N-K} are small
 - ☐ The eigengap $|\lambda_{N-K+1} \lambda_{N-K}|$ is large

How good is the clustering result?

Chung, "Laplacians of graphs and Cheeger's inequalities," 1996

Some basic inequalities

- $\lambda_{N-1} \le N/(N-1)$ with equality for a complete graph
- $\lambda_{N-1} \leq 1$ when the graph is not complete
- $\lambda_1 \geq N/(N-1)$

Cheeger's inequality (1970) small algebraic

connectivity = small h_G

- Cheeger's constant $h_G = \min_A \phi(A)$

approximate value (upper bound) of the target function – small h_G means good clustering

