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Modularity
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Newman, Modularity and community structure in networks (2006)
https://www.pnas.org/content/pnas/103/23/8577.full.pdf

https://www.pnas.org/content/pnas/103/23/8577.full.pdf


Rationale
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Want to:
q measure of how well a network is partitioned into 

communities (i.e., sets of tightly connected nodes)

q solve the problem of selecting the number of 
partitions

Idea:
q “If the number of edges between two groups is 

only what one would expect on the basis of 
random chance, then few thoughtful observers 
would claim this constitutes evidence of 
meaningful community structure” 

q Modularity is “the number of edges falling within 
groups minus the expected number in an 
equivalent network with edges placed at random” 



# of edges within groups Q1
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Q1 =  ∑ aij ⋅ "(ci = cj)

q aij entries of the (binary) adjacency matrix

q " indicating function (=1 if true)
q ci community (value) of node i

ij Blocks = 
edges inside a 

community



# of edges under random rewiring Q2

5

Q2 =  ∑ pij ⋅ "(ci = cj)

q random rewiring keeps nodes degrees

q wiring probability pij = ki⋅ kj /2L  (see Molloy-Reed)

q ki = ∑ aij = node degree

q 2L = ∑ ki = # of stubs

ij

trials

probability of a trial
j

i

The null model !



Modularity
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Modularity (normalized -1 ≤ Q ≤ 1)

Q = (Q1 – Q2)/2L 

=  1/2L⋅ ∑ (aij - ki⋅ kj /2L) ⋅ "(ci = cj)

q Q > 0 if the edges within groups exceed the (expected) 
random number

q Q ∈ [0.3,0.7] for a significant community structure

q Q grows with size of the graph/number of (well-separated) 
clusters (Good et al, 2009) and cannot use Q to compare 
graphs which are very different in size

q Can be modified for signed networks

ij



Two communities case
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q Community membership signal 
v si = 1 if ci = 1
v si = -1 if ci = 2

q Indicating function !(ci = cj) = ½ (1+sisj)

q Modularity Q = ∑ (aij - ki⋅ kj /2L) ⋅ (1+sisj) / 4L

= ∑ si (aij - ki⋅ kj /2L)  sj / 4L 

q Compactly  Q = sT B s / 4L

Bij entries build matrix B
ij

ij



Modularity in dendrograms
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We can use modularity for selecting the number of clusters



Modularity optimization
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q Can use modularity for identifying an optimum 
community detection (max of modularity function)

q Need a simple algorithm for max Q

Modularity optimization – 2 communities

q Find maximum of sT B s under the constraint s ∈ {±1}N

q Non-trivial NP-complex problem



Spectral approach

10



The 2-communities case

11

q B = A – d dT/D real-valued symmetric matrix
q d = A 1 degree vector
q D = 1T d number of stubs (weighted version)

q B = ∑ bi bi
T !i eigen-decomposition

q bi normalized eigenvector |bi|=1
q !i eigenvalue

Maximize sT B s = ∑ (bi
T s)2 !i under the constraint s ∈ {±1}N

i

i



Suboptimum method
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Maximize sT B s = ∑ (bi
T s)2 !i under the constraint s ∈ {±1}N

Maximize (b1
T s)2 !1 under the constraint s ∈ {±1}N

Keep only the strongest component 

s = sign(b1)

i

b1 can be extracted by a power iteration



Modularity optimization
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eigenvalue !1, the other terms being automatically zero, because
the eigenvectors are orthogonal.

Unfortunately, there is another constraint on the problem im-
posed by the restriction of the elements of s to the values !1, which
means s cannot normally be chosen parallel to u1. Let us do our best,
however, and make it as close to parallel as possible, which is
equivalent to maximizing the dot product u1

T!s. It is straightforward
to see that the maximum is achieved by setting si " #1 if the
corresponding element of u1 is positive and si " $1 otherwise. In
other words, all vertices whose corresponding elements are positive
go in one group and all of the rest in the other. This then gives us
the algorithm for dividing the network: we compute the leading
eigenvector of the modularity matrix and divide the vertices into
two groups according to the signs of the elements in this vector.

We immediately notice some satisfying features of this
method. First, as has been made clear, it works even though the
sizes of the communities are not specified. Unlike conventional
partitioning methods that minimize the number of between-
group edges, there is no need to constrain the group sizes or
artificially forbid the trivial solution with all vertices in a single
group. There is an eigenvector (1,1,1, . . .) corresponding to such
a trivial solution, but its eigenvalue is zero. All other eigenvectors
are orthogonal to this one and hence must possess both positive
and negative elements. Thus, as long as there is any positive
eigenvalue this method will not put all vertices in the same group.

It is, however, possible for there to be no positive eigenvalues of
the modularity matrix. In this case the leading eigenvector is the
vector (1,1,1, . . .) corresponding to all vertices in a single group
together. But this is precisely the correct result: the algorithm is in
this case telling us that there is no division of the network that
results in positive modularity, as can immediately be seen from Eq.
4, because all terms in the sum will be zero or negative. The
modularity of the undivided network is zero, which is the best that
can be achieved. This is an important feature of the algorithm. The
algorithm has the ability not only to divide networks effectively, but
also to refuse to divide them when no good division exists. The
networks in this latter case will be called indivisible. That is, a
network is indivisible if the modularity matrix has no positive
eigenvalues. This idea will play a crucial role in later developments.

The algorithm as described makes use only of the signs of the
elements of the leading eigenvector, but the magnitudes convey
information, too. Vertices corresponding to elements of large
magnitude make large contributions to the modularity, Eq. 4,
and conversely for small ones. Alternatively, if we take the
optimal division of a network into two groups and move a vertex
from one group to the other, the vector element for that vertex
gives an indication of how much the modularity will decrease:
vertices corresponding to elements of large magnitude cannot be
moved without incurring a large modularity penalty, whereas
those corresponding to smaller elements can be moved at
relatively little cost. Thus, the elements of the leading eigenvec-
tor measure how firmly each vertex belongs to its assigned
community, those with large vector elements being strong
central members of their communities, whereas those with
smaller elements are more ambivalent.

As an example of the operation of this algorithm, Fig. 2 shows
the result of its application to a famous network from the social
science literature, which has become something of a standard
test for community detection algorithms. The network is the
‘‘karate club’’ network of Zachary (23), which shows the pattern
of friendships between the members of a karate club at an
American university in the 1970s. This example is of particular
interest because, shortly after the observation and construction
of the network, the club in question split in two as a result of an
internal dispute. Applying our eigenvector-based algorithm to
the network, we find the division indicated by the dotted line in
Fig. 2, which coincides exactly with the known division of the club
in real life, indicated by the shapes of the vertices.

The vertices in Fig. 2 are shaded according to the values of the
elements in the leading eigenvector of the modularity matrix, and
these values seem also to accord well with known social structure
within the club. In particular, the three vertices with the heaviest
weights, either positive or negative (black and white vertices in
Fig. 2), correspond to the known ringleaders of the two factions.

Dividing Networks into More than Two Communities
In the preceding section a simple matrix-based method for
finding a good division of a network into two parts is described.
Many networks, however, contain more than two communities,
so we would like to extend the method to find good divisions of
networks into larger numbers of parts. The standard approach to
this problem, and the one adopted here, is repeated division into
two: we use the algorithm of the previous section first to divide
the network into two parts, then divide those parts, and so forth.

In doing this it is crucial to note that it is not correct, after first
dividing a network in two, to simply delete the edges falling
between the two parts and then apply the algorithm again to each
subgraph. This is because the degrees appearing in the defini-
tion, Eq. 1, of the modularity will change if edges are deleted, and
any subsequent maximization of modularity would thus maxi-
mize the wrong quantity. Instead, the correct approach is to write
the additional contribution %Q to the modularity upon further
dividing a group g of size ng in two as

%Q "
1

2m !1
2 "

i, j!g

Bij&si sj # 1' $ "
i, j!g

Bij#
"

1
4m ! "

i, j!g

Bijsi sj $ "
i, j!g

Bij#
"

1
4m "

i, j!g
!Bij $ %ij "

k!g

Bik#si sj

"
1

4m sTB&g's, [5]

where %ij is the Kronecker %-symbol, we have made use of si
2 "

1, and B(g) is the ng ( ng matrix with elements indexed by the
labels i,j of vertices within group g and having values

Fig. 2. Application of the eigenvector-based method to the karate club
network of ref. 23. Shapes of vertices indicate the membership of the corre-
sponding individuals in the two known factions of the network, and the
dotted line indicates the split found by the algorithm, which matches the
factions exactly. The shades of the vertices indicate the strength of their
membership, as measured by the value of the corresponding elements of the
eigenvector.

Newman PNAS $ June 6, 2006 $ vol. 103 $ no. 23 $ 8579
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Modularity optimization
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Fast modularity optimization
q Start from a single community and Q = 0

q Hierarchically bisection (partition in two) each 
community
q Find the leading eigenvector b1 ofB
q Identify the partition through the signs of b1

q Eventually refine the partition by (iteratively) 
moving one vertex at-a-time to the other group , 
and by confirming the move if Q increases 
(Kernigan & Lin, 1970)

q If a proposed split does not cause modularity to 
increase, declare community indivisible



Louvain algorithm

15

Blondel, Guillaume, Lambiotte, Lefebvre (2008)
Fast unfolding of communities in large networks
https://arxiv.org/abs/0803.0476

https://arxiv.org/abs/0803.0476


A scalable approach
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q Spectral approach robust but complex

q Need a scalable approach à Louvain
q A greedy technique
q Reference implementation in Python, R, MatLab



Hierarchical approach
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q Each node is a community @ start

q Phase 1: modularity is optimized
by allowing only local changes of 
communities

q Phase 2: the communities found
are aggregated (sum of links) in 
order to build a new network of 
communities

The passes are repeated iteratively
until no increase of modularity is
possible



Local changes – easy to calculate
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q for each node i consider the neighbours j of i

q evaluate the gain of modularity that would take place by removing i
from its community and by placing it in the community of j

q node i is then placed in the community for which this gain is
maximum (and positive)

node i

community C

community C + node iwhat makes the difference

!Q =  2 ∑ (aij – di dj /D)/D
j∊ C∩Ni



Louvain: characteristics
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qImplements modularity optimization
qScalable (low complexity)
qEffective
qAvailable as the reference implementation in 

any programming language
qA greedy technique (in the order the nodes are 

searched)
can be solved by consensus clustering



Consensus clustering
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Consensus clustering
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1. Apply Louvain to A to yield P community detections 
(partitions)

2. Compute the consensus matrix D
Ø Dij is the fraction of partitions in which vertices i and j

are assigned to the same cluster
Ø entries below a chosen threshold are set to zero

3. Apply Louvain to D to yield P partitions
Ø if the partitions are all equal, stop
Ø otherwise go back to 2.

Lancichinetti & Fortunato, Consensus clustering in complex networks, 2012 
https://www.nature.com/articles/srep00336

https://www.nature.com/articles/srep00336


Consensus clustering example
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1 1 3 2

1 2 3 2

2 3 2 1

2 4 1 1

3 5 1 1

P=4 community assignments

4 3 0 0 0

3 4 0 0 0

0 0 4 2 1

0 0 2 4 2

0 0 1 2 4

5x5 consensus matrix (unnormalized) 

Resulting “average” 
network A B

C

D

E



Resolution limit
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The resolution limit
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tunable value

Generalized modularity

Q =  1/2L⋅ ∑ (aij - " ki⋅ kj /2L) ⋅ #(ci = cj)

q prevents the algorithms in detecting small communities 
q arises because the null model assumes that each node 

has an equal probability of connecting to every other 
node 



Performance wrt !
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Modularity 
decreases

Nastaran Amini, Community and Hub Detection in Human Functional Brain Networks, 2020

Which ! should 
we use?

Clean thanks to 
consensus 
clustering



MI = mutual information
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Mutual information

Maximum value

e.g., similarity between two different 
community assignments



VI = variation of information
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e.g., dissimilarity between two different 
community assignments



VI = variation of information
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Fraction of nodes belonging to the ith
community in the 1st assignment

Fraction of nodes belonging to the jth
community in the 2nd assignmentFraction of nodes belonging to the ith

community in the 1st assignment and to the 
jth community in the 2nd assignment



An application example
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Community detection in functional brain networks (fMRI data)



The challenge
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How do brain regions interconnect?

fMRI correlation matrix

Can run Louvain on it to 
identify meaningful 

patterns for each subject



The patterns
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3 patterns per subject

How to measure their similarity?
• NVI L
• Dice correlationJ

Can we cluster them?
Yes, using Louvain on a
similarity matrix



The clusters

32



The result
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Another application example
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The rise of #climateaction in the time of the FridaysForFuture movement: A 
semantic network analysis, Social Networks, 2022
https://www.sciencedirect.com/science/article/pii/S037887332200057

https://www.sciencedirect.com/science/article/pii/S037887332200057


#climatechange before/after Greta
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What to search in Twitter?

chosen timeframes



Refining hashtags
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Bipartite graph

1

2

3

Tweets
Hashtags
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those who think they are crazy enough to 
change the world eventually do. 

#climatechange #ClimateCrisis #ClimateAction
#GretaThunberg #Greta

#climatechange

#GretaThunberg4

5

6

7

8

Hopefully these kids will succeed where past
generations have failed.

#TheResistance #FBR #ClimateChange
#Environment  #GlobalWarming

#GretaThunberg

#GlobalWarming

#Environment

The #environment can have a major effect on 
the human cardiovascular system. A new study

has found an increase in heat-induced
#heartattack risk in recent years. Could

#ClimateChange be a risk factor? #longevity

#longevity



Communities
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Communities (1/2)

39

Assigned by 
community-
specific 
PageRank



Communities (2/2)
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Relations among communities
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Questions ?
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