Network Science
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Network communities
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Conceptual picture of a network

Cluster/Community

e

(strong tie)

Bndge

é (weak tie)

-1 We often think of networks looking like this
] But, where does this idea come from?
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Granovetter’s explanation

Granovetter, The strength of weak ties [1973]
https://www.jstor.org/stable/pdf/2776392.pdf

Q: How do people discovered their new jobs?

A: Through personal contacts, and mainly through
acquaintances rather than through close friends

Remark: Good jobs are a scarce resource
Conclusion:

d  Structurally embedded edges are also socially strong, but are
heavily redundant in terms of information access

J Long-range edges spanning different parts of the network are
socially weak, but allow you to gather information from
different parts of the network (and get a job)
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Local bridges

local bridge

—_— — — —_—— —

1 An edge (i,j) is a bridge if deleting it i and j fall into
different components

this is extremely rare, e.g., because of small world properties

. An edge (i,j) is a local bridge if, by deleting it, i and j
have a span (distance) greater than 2, i.e., if iand
do not have friends in common

common friends imply belonging to a triadic closure
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Strong triadic closure

Assume two categories of edges:
1 Strong ties (close friends)
1 Weak ties (acquaintances)

Remark. If node B is strongly tied with A and C, then A and
C are very likely to be connected (either weakly or
strongly), that is

or

Strong triadic closure property — If a generic node B is
strongly tied with A and C, then A and C are connected
(either weakly or strongly)
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Granovetter’s claim

Claim:

(1 Under the strong triadic closure property, local

bridges are weak ties (if at least one of their nodes
belongs to at least two strong ties)

Proof:
(1 By contradiction
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Community detection

d Granovetter’s theory suggests that networks
are composed of tightly connected sets of
nodes (i.e., communities), loosely connected
between them

1 We want to be able to automatically find such
densely connected group of nodes

. Applications in
Social networks

Functional brain networks
in heuroscience

Scientific interactions

Figure 2 | A network of collaborations among scientists at a research
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Community detection

Some relevant algorithms/approaches

d Dendrograms

d Girvan-Newman (2001) I
' Modularity optimization (2004) "=
 Spectral clustering (2002) RNIRE =

Find a complete list in: T af.

Fortunato, Community detection in graphs [2010]

https://www.sciencedirect.com/science/article/pii/S0370157309002841

MIiME.



https://www.sciencedirect.com/science/article/pii/S0370157309002841

Overlapping communities

Lescovec, Lang, Dasgupta, Mahoney, 2008

Community Structure in Large Networks: Natural Cluster
Sizes and the Absence of Large Well-Defined Clusters

https://arxiv.org/abs/0810.1355
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The core-periphery model

7 i, ‘V’ :
5 -(.v Z

L DY

Small, perlpheral 4
clusters g /7’ I Core

Caricature of network structure

Can we find a justification for this?

MIiME



Network community profile

Conductance ¢(S) — a metric for clusters

d Sis a good cluster if it has many edges internally and
few pointing outside

Network community profile — a metric for networks
4 @(k) = min 5, P(S)
. Shows the best score for communities of order k

A 7(;
k=5 k=7 k=10 %
(@] (@]
log (k) ° /

N
o 5
3

Community size, log k -t
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Network community profile

Cluster score, log ®(k)
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* Run the favorite clustering method
* Each dot represents a cluster
* Foreachsize find "best” cluster
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Social network examples
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V shape of NCP
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[ Dips in the graph correspond to the good clusters

1 Slope corresponds to the dimensionality of the network
. The V shape is common in large (social) networks
] Best clusters have about 100 nodes

O Large clusters get worse and worse performance
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What if we remove good clusters?
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Overlapping communities model

Wiskers
1 are typically of size 100

1 are responsible of good communities
Core

1 denser and denser region \
J contains 60% nodes and 80% edges  ———

1 a region where communities overlap (as tiles)
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Overlapping communities model

P(k), Edge probability

0.25

0.2

0.15

0.1

0.05 +

Edge density
is bigger in
the overlap

Ground truth - Edge probability increases
with the number of shared communities

Feld, The focused organization of social ties, [1981]
The more different foci (communities) that two individuals
share, the more likely is that they will be tied

1 2 3 4 5
k, Number of shared communities
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Overlapping communities model

most assume a wrong overlapping model !

Available algorithms
[ Clique percolation (Palla et al., 2005)

1 Link clustering (Ahn et al., 2010) (Evans et al., 2009)

1 Clique expansion (Lee et al., 2010)

J Mixed membership stochastic model (Airoldi et al., 2008)
[ Bayesian matrix factorization (Psorakis et al., 2011)

..

] BigCLAM (Yang and Lescovec, 2013)

..
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separation level for
identifying multiple

communities

A (agglomerative) hierarchical clustering algorithm

1 Progressively add edges, from the strongest and

ending with the weakest ones

1 Example for Zachary’s Karate club network

MIiME.
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Zachary’s Karate club (social) network

Nodes: Club members
Edges: Interactions

d Ground truth
(1 Observe social ties and rivalries in a university club
(1 During observation conflict led the group to split

d Split could be explained by a minimum cut
MiME. 23



Pros and cons of dendrograms

Pros and cons

d Performance strongly depends on the chosen

weight (local weight definitions typically provide
weak solutions)

d Can be agglomerative or divisive, but adding

strongest weights is in general weaker that deleting
weaker ones

1 May provide poor results
d Useful method, far from perfect
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Agglomerative hierarchical clustering example

Weight: Euclidean distance Dendrogram
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Edge betweenness

Girvan and Newman, Community structure in social and biological networks [2001]
https://www.pnas.org/content/99/12/7821

(1 Use the concept of edge betweenness

O-k,ﬁ(ia.j)
b=

o
(k,£)eN? kot

where g, is the # of shortest paths connecting k to /, and a,(i,j) the
subset of these including edge (i)

1 Expresses centrality of a link in the network
1 Can be normalized to range [0,1]

( bij_ bmin )/( bmax_ bmin )

 Generalization of vertex betweenness (Freeman 1977)
(Anthonisse, 1971)

MIiME.
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Edge betweenness in a cellular call network
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Calculating betweenness

Breadth first search (from 1)

MIiME.

Count # of shortest paths (from 1)
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Calculating betweenness

Measure edge flow (fractions) Measure edge betweenness (from 1)

MiME. ... then repeat for all other nodes!!! O(LN)



Girvan-Newman method

1 Repeat until no edges are left in the graph

1 (Re)calculate edge betweenness in the current graph —
complexity O(LN) by using a smart algorithm

1 Remove edges with highest betweenness
1 Connected components are communities

It is a (divisive) hierarchical clustering algorithm
Complexity O(L°N)

Recalculation step is essential to detect meaningful
communities
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Zachary’s karate club example
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1 - instructor
34 - president
Correct but node 3
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Questions ?




