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Network communities
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Conceptual picture of a network
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Cluster/Community
(strong tie)

(weak tie)
Bridge

q We often think of networks looking like this
q But, where does this idea come from?



Granovetter’s explanation 
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Q: How do people discovered their new jobs?
A: Through personal contacts, and mainly through 
acquaintances rather than through close friends

Remark: Good jobs are a scarce resource
Conclusion: 
q Structurally embedded edges are also socially strong, but are 

heavily redundant in terms of information access

q Long-range edges spanning different parts of the network are 
socially weak, but allow you to gather information from 
different parts of the network (and get a job)

Granovetter, The strength of weak ties [1973]
https://www.jstor.org/stable/pdf/2776392.pdf

https://www.jstor.org/stable/pdf/2776392.pdf


Local bridges
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q An edge (i,j) is a bridge if deleting it i and j fall into 
different components

this is extremely rare, e.g., because of small world properties

q An edge (i,j) is a local bridge if, by deleting it, i and j
have a span (distance) greater than 2, i.e., if i and j
do not have friends in common

common friends imply belonging to a triadic closure



Strong triadic closure
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Strong triadic closure property – If a generic node B is 
strongly tied with A and C, then A and C are connected 
(either weakly or strongly) 

Assume two categories of edges: 

q Strong ties (close friends) 
q Weak ties (acquaintances) 

Remark. If node B is strongly tied with A and C, then A and 
C are very likely to be connected (either weakly or 
strongly), that is



Granovetter’s claim 
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Claim: 

q Under the strong triadic closure property, local 
bridges are weak ties (if at least one of their nodes 
belongs to at least two strong ties) 

Proof:
q By contradiction



Community detection
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q Granovetter’s theory suggests that networks 
are composed of tightly connected sets of 
nodes (i.e., communities), loosely connected 
between them

q We want to be able to automatically find such 
densely connected group of nodes

q Applications in
Social networks
Functional brain networks 

in neuroscience
Scientific interactions

REVIEW ARTICLES | INSIGHT NATURE PHYSICS DOI:10.1038/NPHYS2162

Figure 2 |A network of collaborations among scientists at a research
institute. Nodes in this network represent the scientists and there is an

edge between any pair of scientists who co-authored a published paper

during the years of the study. Colours represent communities, as

discovered using a modularity-maximization technique.

leader or principal investigator of some kind. Distinctions such as
these, which may be crucial for understanding the behaviour of
the system, become apparent only when one looks at structure on
the community level.

The network in this particular example has the nice property that
it is small enough and sparse enough to be drawn clearly on the page.
One does not need any calculations to pick out the communities in
this case: a good eye will do the job. However, when we are working
with larger or denser networks, networks that can have thousands
or even millions of nodes (or a smaller number of nodes but very
many edges), clear visualization becomes impossible and we must
turn instead to algorithmic methods for community detection and
the development of such methods has been a highly active area of
research in the past few years15.

The community-detection problem is challenging in part be-
cause it is not verywell posed. It is agreed that the basic problem is to
find locally dense regions in a network, but this is not a precise for-
mulation. If one is to create a method for detecting communities in
amechanical way, onemust first define exactly what onemeans by a
community. Researchers have been aware of this issue from the out-
set and have proposed a wide variety of definitions, based on counts
of edges within and between communities, counts of paths across
networks, spectral properties of network matrices, information-
theoretic measures, randomwalks andmany other quantities. With
this array of definitions comes a corresponding array of algorithms
that seek to find the communities so defined14,15,19–31. Unfortu-
nately, it is no easy matter to determine which of these algorithms
are the best, because the perception of good performance itself
depends on how one defines a community and each algorithm
is necessarily good at finding communities according to its own

definition. To get around this circularity, we typically take one of
two approaches. In the first, algorithms are tested against real-world
networks for which there is an accepted division into communities,
often based on additionalmeasurements that are independent of the
network itself, such as interviews with participants in a social net-
work or analysis of the text of web pages. If an algorithm can reliably
find the accepted structure then it is considered successful. In the
second approach, algorithms are tested against computer-generated
networks that have some form of community structure artificially
embedded within them. A number of standard benchmark net-
works have been proposed for this purpose, such as the ‘four groups’
networks14 or so-called the LFR benchmark networks32. A number
of studies have been published that compare the performance of
proposed algorithms in these benchmark tests33,34. Although these
approaches do set concrete targets for performance of community-
detectionmethods, there is room for debate over whether those tar-
gets necessarily align with good performance in broader real-world
situations. If we tune our algorithms to solve specific benchmark
problems we run the risk of creating algorithms that solve those
problemswell but other (perhapsmore realistic) problems poorly.

This is a crucial issue and one that is worth bearing inmind as we
take a look in the following sections at the present state of research
on community detection. As we will see, however, researchers have,
in spite of the difficulties, come up with a range of approaches that
return real, useful information about the large-scale structure of
networks, and in the process have learned much, both about indi-
vidual networks that have been analysed and about mathematical
methods for representing and understanding network structure.

Hierarchical clustering
Studies of communities in networks go back at least to the 1970s,
when a number of techniques were developed for their detection,
particularly in computer science and sociology. In computer
science the problem of graph partitioning35, which is similar
but not identical to the problem of community detection, has
received attention for its engineering applications, but the methods
developed, such as spectral partitioning36 and the Kernighan–
Lin algorithm37, have also been fruitfully applied in other areas.
However, it is thework of sociologists that is perhaps themost direct
ancestor ofmodern techniques of community detection.

An early, and still widely used, technique for detecting
communities in social networks is hierarchical clustering5,11.
Hierarchical clustering is in fact not a single technique but an
entire family of techniques, with a single central principle: if we
can derive a measure of how strongly nodes in a network are
connected together, then by grouping the most strongly connected
we can divide the network into communities. Specific hierarchical
clusteringmethods differ on the particularmeasure of strength used
and on the rules by which we group strongly connected nodes.
Most common among themeasures used are the so-called structural
equivalence measures, which focus on the number nij of common
network neighbours that two nodes i, j have. In a social network
of friendships, for example, two people with many mutual friends
are more likely to be close than two people with few and thus a
count of mutual friends can be used as a measure of connection
strength. Rather than using the raw count nij , however, one typically
normalizes it in some way, leading to measures such as the Jaccard
coefficient and cosine similarity. For example, the cosine similarity
�ij between nodes i and j is defined by

�ij =
nijp
kikj

where ki is the degree of node i (that is, the number of con-
nections it has). This measure has the nice property that its

26 NATURE PHYSICS | VOL 8 | JANUARY 2012 | www.nature.com/naturephysics



Community detection
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Some relevant algorithms/approaches
q Dendrograms
q Girvan-Newman (2001)
q Modularity optimization (2004)
q Spectral clustering (2002)

Find a complete list in: 
Fortunato, Community detection in graphs [2010]

https://www.sciencedirect.com/science/article/pii/S0370157309002841

https://www.sciencedirect.com/science/article/pii/S0370157309002841


Overlapping communities

10

Lescovec, Lang, Dasgupta, Mahoney, 2008
Community Structure in Large Networks: Natural Cluster 
Sizes and the Absence of Large Well-Defined Clusters
https://arxiv.org/abs/0810.1355

https://arxiv.org/abs/0810.1355


The core-periphery model
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Can we find a justification for this?

6 Leskovec, Lang, Dasgupta, and Mahoney

(a) Typical NCP plot (b) Caricature of network structure

Figure 2: (a) Typical network community profile plot for a large social or information network: networks have
better and better communities up to a size scale of ≈ 100 nodes, and after that size scale communities “blend-in”
with the rest of the network (red curve). However, real networks still have more structure than their randomized
(conditioned on the same degree distribution) counterparts (black curve). Even more surprisingly, if one allows
for disconnected communities (blue curve), the community quality scores often get even better (even though such
communities have no intuitive meaning). (b) Network structure for a large social or information network, as
suggested by our empirical evaluations. See the text for more information on the “core” and “whiskers,” and note
that the core in our real-world networks is actually extremely sparse.

• Even up to the largest size scales, we observe significantly more structure than would be seen, for
example, in an expander-like random graph on the same degree sequence.

A schematic picture of a typical network community profile plot is illustrated in Figure 2(a). In red
(labeled as “original network”), we plot community size vs. community quality score for the sets of
nodes extracted from the original network. In black (rewired network), we plot the scores of communities
extracted from a random network conditioned on the same degree distribution as the original network.
This illustrates not only tight communities at very small scales, but also that at larger and larger size
scales (the precise cutoff point for which is difficult to specify precisely) the best possible communities
gradually “blend in” more and more with the rest of the network and thus gradually become less and less
community-like. Eventually, even the existence of large well-defined communities is quite questionable
if one models the world with an interaction graph, as in point (1) above, and if one also defines good
communities as densely linked clusters that are weakly-connected to the outside, as in hypothesis (2)
above. Finally, in blue (bag of whiskers), we also plot the scores of communities that are composed of
disconnected pieces (found according to a procedure we describe in Section 4). This blue curve shows,
perhaps somewhat surprisingly, that one can often obtain better community quality scores by combining
unrelated disconnected pieces.

To understand the properties of generative models sufficient to reproduce the phenomena we have
observed, we have examined in detail the structure of our social and information networks. Although
nearly every network is an exception to any simple rule, we have observed that an “octopus” or “jellyfish”
model [42, 152, 148] provides a rough first approximation to structure of many of the networks we have
examined. That is, most networks may be viewed as having a “core,” with no obvious underlying geometry
and which contains a constant fraction of the nodes, and then there is a periphery consisting of a large
number of relatively small “whiskers” that are only tenuously connected to the core. Figure 2(b) presents
a caricature of this network structure. Of course, our network datasets are far from random in numerous
ways—e.g., they have higher edge density in the core; the small barely-connected whisker-like pieces are
generally larger, denser, and more common than in corresponding random graphs; they have higher local

Small, peripheral 
clusters



¡ Define:
Network	community	profile	(NCP)	plot
Plot	the	score	of	best community	of	size	k

11/28/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 24

Community size, log k

log Φ(k)

k=5 k=7

[WWW ‘08]

k=10

(Note |S| < |V|/2)

Network community profile
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Conductance !(S) – a metric for clusters

q S is a good cluster if it has many edges internally and
few pointing outside

Network community profile – a metric for networks
q "(k) = min|S|=k !(S) 
q Shows the best score for communities of order k



11/28/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 25

• Run the favorite clustering method
• Each dot represents a cluster
• For each size find “best” cluster

Cluster size, log k
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Network community profile
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Examples
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Social network examples
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V shape of NCP
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Typical	example:	General	Relativity	collaborations
(n=4,158, m=13,422)

11/28/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 29

[Internet Mathematics ‘09]

q Dips in the graph correspond to the good clusters
q Slope corresponds to the dimensionality of the network

q The V shape is common in large (social) networks
q Best clusters have about 100 nodes
q Large clusters get worse and worse performance



What if we remove good clusters?
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34

Nothing happens!
 ⇒Nestedness of the 

core-periphery structure
11/28/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



Overlapping communities model
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Wiskers
q are typically of size 100

q are responsible of good communities
Core
q denser and denser region
q contains 60% nodes and 80% edges

q a region where communities overlap (as tiles)

6 Leskovec, Lang, Dasgupta, and Mahoney

(a) Typical NCP plot (b) Caricature of network structure

Figure 2: (a) Typical network community profile plot for a large social or information network: networks have
better and better communities up to a size scale of ≈ 100 nodes, and after that size scale communities “blend-in”
with the rest of the network (red curve). However, real networks still have more structure than their randomized
(conditioned on the same degree distribution) counterparts (black curve). Even more surprisingly, if one allows
for disconnected communities (blue curve), the community quality scores often get even better (even though such
communities have no intuitive meaning). (b) Network structure for a large social or information network, as
suggested by our empirical evaluations. See the text for more information on the “core” and “whiskers,” and note
that the core in our real-world networks is actually extremely sparse.

• Even up to the largest size scales, we observe significantly more structure than would be seen, for
example, in an expander-like random graph on the same degree sequence.

A schematic picture of a typical network community profile plot is illustrated in Figure 2(a). In red
(labeled as “original network”), we plot community size vs. community quality score for the sets of
nodes extracted from the original network. In black (rewired network), we plot the scores of communities
extracted from a random network conditioned on the same degree distribution as the original network.
This illustrates not only tight communities at very small scales, but also that at larger and larger size
scales (the precise cutoff point for which is difficult to specify precisely) the best possible communities
gradually “blend in” more and more with the rest of the network and thus gradually become less and less
community-like. Eventually, even the existence of large well-defined communities is quite questionable
if one models the world with an interaction graph, as in point (1) above, and if one also defines good
communities as densely linked clusters that are weakly-connected to the outside, as in hypothesis (2)
above. Finally, in blue (bag of whiskers), we also plot the scores of communities that are composed of
disconnected pieces (found according to a procedure we describe in Section 4). This blue curve shows,
perhaps somewhat surprisingly, that one can often obtain better community quality scores by combining
unrelated disconnected pieces.

To understand the properties of generative models sufficient to reproduce the phenomena we have
observed, we have examined in detail the structure of our social and information networks. Although
nearly every network is an exception to any simple rule, we have observed that an “octopus” or “jellyfish”
model [42, 152, 148] provides a rough first approximation to structure of many of the networks we have
examined. That is, most networks may be viewed as having a “core,” with no obvious underlying geometry
and which contains a constant fraction of the nodes, and then there is a periphery consisting of a large
number of relatively small “whiskers” that are only tenuously connected to the core. Figure 2(b) presents
a caricature of this network structure. Of course, our network datasets are far from random in numerous
ways—e.g., they have higher edge density in the core; the small barely-connected whisker-like pieces are
generally larger, denser, and more common than in corresponding random graphs; they have higher local



¡ Basic	question:	nodes	u, v share	k communities
¡ What’s	the	edge	probability?

40

LiveJournal
social network

Amazon
product network

Overlapping communities model
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Ground truth - Edge probability increases 
with the number of shared communities

Feld, The focused organization of social ties, [1981]
The more different foci (communities) that two individuals 

share, the more likely is that they will be tied

Edge density 
is bigger in 
the overlap



¡ Many	overlapping	community	detection	
methods	make	an	implicit	assumption:	
§ Edge	probability	decreases	with	the	
number	of	shared	communities

38

Network Adjacency matrix

Nodes

N
od

es

Is this true?

Overlapping communities model
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Available algorithms
q Clique percolation (Palla et al., 2005)
q Link clustering (Ahn et al., 2010) (Evans et al., 2009)

q Clique expansion (Lee et al., 2010)
q Mixed membership stochastic model (Airoldi et al., 2008)
q Bayesian matrix factorization (Psorakis et al., 2011)
q …

q BigCLAM (Yang and Lescovec, 2013)
q …

most assume a wrong overlapping model !



Dendrograms
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Dendrograms
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q A (agglomerative) hierarchical clustering algorithm
q Progressively add edges, from the strongest and 

ending with the weakest ones
q Example for Zachary’s Karate club network

NATURE PHYSICS DOI:10.1038/NPHYS2162 INSIGHT | REVIEW ARTICLES

Figure 3 |Average-linkage clustering of a small social network. This tree or ‘dendrogram’ shows the results of the application of average-linkage

hierarchical clustering using cosine similarity to the well-known karate-club network of Zachary
38
, which represents friendship between members of a

university sports club. The calculation finds two principal communities in this case (the left and right subtrees of the dendrogram), which correspond

exactly to known factions within the club (represented by the colours).

value falls always between zero and one—zero if the nodes have
no common neighbours and one if they have all their neigh-
bours in common.

Once one has defined a measure of connection strength, one
can begin to group nodes together, which is done in hierarchical
fashion, first grouping single nodes into small groups, then
grouping those groups into larger groups and so forth. There are a
number of methods by which this grouping can be carried out, the
three common ones being the methods known as single-linkage,
complete-linkage and average-linkage clustering. Single-linkage
clustering is the most widely used by far, primarily because it is
simple to implement, but in fact average-linkage clustering gener-
ally gives superior results and is notmuch harder to implement.

Figure 3 shows the result of applying average-linkage hierarchical
clustering based on cosine similarity to a famous network from
the social networks literature, Zachary’s karate-club network38.
This network represents patterns of friendship between members
of a karate club at a US university, compiled from observations
and interviews of the club’s 34 members. The network is of
particular interest because during the study a dispute arose among
the club’s members over whether to raise club fees. Unable to
reconcile their differences, the members of the club split into
two factions, with one faction departing to start a separate club.
It has been claimed repeatedly that by examining the pattern
of friendships depicted in the network (which was compiled
before the split happened) one can predict the membership of the
two factions14,20,26,27,38–40.

Figure 3 shows the output of the hierarchical clustering proce-
dure in the form of a tree or ‘dendrogram’ representing the order in
which nodes are grouped together into communities. It should be
read from the bottom up: at the bottom we have individual nodes
that are grouped first into pairs, and then into larger groups as
we move up the tree, until we reach the top, where all nodes have
been gathered into one group. In a single image, this dendrogram
captures the entire hierarchical clustering process. Horizontal cuts
through the figure represent the groups at intermediate stages.

As we can see, the method in this case joins the nodes together
into two large groups, consisting of roughly half the network each,
before finally joining those two into one group at the top of the
dendrogram. It turns out that these two groups correspondprecisely
to the groups into which the club split in real life, which are
indicated by the colours in the figure. Thus, in this case the method
works well. It has effectively predicted a future social phenomenon,
the split of the club, fromquantitative datameasured before the split
occurred. It is the promise of outcomes such as this that drivesmuch
of the present interest in networks.

Hierarchical clustering is straightforward to understand and to
implement, but it does not always give satisfactory results. As it
exists in many variants (different strength measures and different
linkage rules) and different variants give different results, it is not
clear which results are the ‘correct’ ones. Moreover, the method
has a tendency to group together those nodes with the strongest
connections but leave out those with weaker connections, so that
the divisions it generates may not be clean divisions into groups,
but rather consist of a few dense cores surrounded by a periphery of
unattached nodes. Ideally, wewould like amore reliablemethod.

Optimization methods
Over the past decade or so, researchers in physics and applied
mathematics have taken an active interest in the community-
detection problem and introduced a number of fruitful approaches.
Among the first proposals were approaches based on a measure
known as betweenness14,21,41, in which one calculates one of
several measures of the flow of (imaginary) traffic across the
edges of a network and then removes from the network those
edges with the most traffic. Two other related approaches are
the use of fluid-flow19 and current-flow analogies42 to identify
edges for removal; the latter idea has been revived recently
to study structure in the very largest networks30. A different
class of methods are those based on information-theoretic ideas,
such as the minimum-description-length methods of Rosvall and
Bergstrom26,43 and related methods based on statistical inference,
such as the message-passing method of Hastings25. Another large
class exploits links between community structure and processes
taking place on networks, such as randomwalks44,45, Potts models46
or oscillator synchronization47. A contrasting set of approaches
focuses on the detection of ‘local communities’23,24 and seeks to
answer the question of whether we can, given a single node,
identify the community to which it belongs, without first finding
all communities in the network. In addition to being useful for
studying limited portions of larger networks, this approach can give
rise to overlapping communities, in which a node can belong to
more than one community. (The generalized community-detection
problem in which overlaps are allowed in this way has been an area
of increasing interest within the field in recent years22,31.)

However, the methods most heavily studied by physicists, per-
haps unsurprisingly, are those that view the community-detection
problem by analogy with equilibrium physical processes and treat
it as an optimization task. The basic idea is to define a quantity
that is high for ‘good’ divisions of a network and low for ‘bad’
ones, and then to search through possible divisions for the one
with the highest score. This approach is similar to the minimization

NATURE PHYSICS | VOL 8 | JANUARY 2012 | www.nature.com/naturephysics 27

separation level for 
identifying multiple 

communities



Zachary’s Karate club (social) network
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q Ground truth
q Observe social ties and rivalries in a university club

q During observation conflict led the group to split
q Split could be explained by a minimum cut



Pros and cons of dendrograms
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Pros and cons
q Performance strongly depends on the chosen 

weight (local weight definitions typically provide 
weak solutions)

q Can be agglomerative or divisive, but adding 
strongest weights is in general weaker that deleting 
weaker ones 

q May provide poor results
q Useful method, far from perfect



Agglomerative hierarchical clustering example
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Data:
Weight: Euclidean distance Dendrogram



Edge betweenness 
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q Use the concept of edge betweenness

bij = 

where !kl is the # of shortest paths connecting k to l, and !kl (i,j) the 
subset of these including edge (i,j)

q Expresses centrality of a link in the network
q Can be normalized to range [0,1]

( bij – bmin )/( bmax – bmin )

q Generalization of vertex betweenness (Freeman 1977) 
(Anthonisse, 1971)

Girvan and Newman, Community structure in social and biological networks [2001]
https://www.pnas.org/content/99/12/7821

https://www.pnas.org/content/99/12/7821


Edge betweenness in a cellular call network
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Calculating betweenness 
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1

2 3

4 5

6

1

2

Breadth first search (from 1)
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Count # of shortest paths (from 1)
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1
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Calculating betweenness 
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1

2 3

4 5

6

Measure edge flow (fractions)

1

1

1

2
1

3

2/3

1/3

1 1/2
1/2

1 1
1

2 3

4 5

6

Measure edge betweenness (from 1)

1+4/3+5/6=19/6

5/31+1/3=4/3

1

2/31/3

1 1/2
1/2

1
1

2/31/3

4/3
5/6

5/6

19/6

11/6

11/6

… then repeat for all other nodes!!! O(LN)



Girvan-Newman method 
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q Repeat until no edges are left in the graph
q (Re)calculate edge betweenness in the current graph –

complexity O(LN) by using a smart algorithm

q Remove edges with highest betweenness
q Connected components are communities

It is a (divisive) hierarchical clustering algorithm
Complexity O(L2N) 
Recalculation step is essential to detect meaningful 
communities



Zachary’s karate club example
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1 - instructor
34 - president
Correct but node 3



Questions ?

32


