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Humans and social media
We have access to an unlimited amount of information, 
but we follow a limited number of sources

Because we are…
Bounded

Biased
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Effects on online behaviour
Polarization

Homophily

Selective exposure



Homophily
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Political blog communities



Homophily at action: racial segregation
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(Easley and Kleinberg, 2010)



Polarization
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The extreme segregation of users into
homogeneous communities based on their
opinion on a controversial topic

Polarization of users

neutral

pro-conspiracy

pro-science



Eco chambers
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Filter bubbles
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Assortativity (degree homophily)
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A.L. Barabási, Network science, http://barabasi.com/networksciencebook

Ch.7 “Degree correlation”

http://barabasi.com/networksciencebook


Correlation between hubs
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q In some networks, hubs frequently connect
with other hubs

e.g., celebrity dating, actor networks

q In other cases hubs avoid connections with 
other hubs

e.g., methabolic graphs, food webs (predators tend to 
differentiate their diet)



Assortativity
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q Assortative network: high degree nodes 
connect with each other avoiding low 
degree nodes (tend to cliques)

q Disassortative network: opposite trend, 
hubs tend to avoid each other

q Neutral network: one with random wiring, 
i.e., aside from the (marginal) degree 
distribution of nodes, there is no correlation
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Assortativity

(dis)assortativity in sociology quantifies homophily 
in social networks, e.g., effects like:

q Rich people tend to be friends with each other
q People with the same education tend to hang 

out together

i.e., we expect social networks to be assortative



Neutral networks
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The degree correlation matrix Ek1,k2 is
visually centred around the average degree

In the neutral case we expect 
Ek1,k2 = qk1 qk2, i.e., independence



Assortative networks
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The degree correlation matrix 
Ek1,k2 is turning to the right



Disassortative networks
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The degree correlation matrix 
Ek1,k2 is turning to the left



Perfect assortativity
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q Each node connects 
only to nodes of the 
same degree = cliques!



Nearest neighbour degree
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q Idea : inspect the degrees 
of the neighbouring nodes (easier than 
matrices)

average neighbour 
degree of node i is       

¼ (4 + 3 + 1 + 3) = 2.75 
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ln (knn) = ! ln(ki) à ! > 0 = assortative

! < 0 = disassortative

constant = independent of the 
degree (i.e., random = neutral)

Examples



Scientific collaboration network
(undirected, assortative)
http://networksciencebook.com/translations/en/
resources/data.html

1. Evaluate average neigh. deg. knn
2. Average w.r.t. k
3. Extract the assortativity value 

!=0.16

Scientific collaboration network
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http://networksciencebook.com/translations/en/resources/data.html


Wikipedia voting dataset
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Wikipedia voting dataset
(directed, neutral)
https://snap.stanford.edu/data/wiki-
Vote.html

averages are taken w.r.t. in/out 
degrees for in/out neighbours

! in out
in 0.0127 -0.083
out -0.063 -0.027

https://snap.stanford.edu/data/wiki-Vote.html


Alternative parameter
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Pearson correlation coefficient r = cov/!2  

• Eki is the degree correlation matrix

• qk = Σ Eki is the degree probability

• m = Σ k qk is the mean

• !2 = Σ k2 qk - m2 is the variance

• cov = Σ ki Eki - m2 is the covariance

i

k

k

k,i



Comparing the views
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q linear model        
r = ! k ? Not 
really

q Correlation 
between the 
signs of r and !

q But ! is a more 
reliable measure
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Implications of assortativity
(dis)assortativity influences the path length and the 
network diameter

PDF of node 
distances

In assortative
networks the 
average path 

length decreases

… and the diameter increases!!! (nodes 
with low degree tend to interconnect)



Structural Disassortativity
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Rationale for (dis)assortativity
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(dis)Assortativity can be linked to structural network 
properties:
q e.g., if no multi-links and self-loops allowed then the 

network cannot be neutral
q if neutral à the # of expected links between nodes of 

degree k and m is 2L qkqm , easily > 1 (i.e., multi-links)
q likely to happen with 

hubs (they have large qk)

structural 
disassortativity

when the effect is 
seen on hubs



Structural vs natural cutoffs
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structural 
disassortativity

structural cutoff
natural
cutoff

small natural 
cutoff

no structural 
disassortativity

large degrees cannot 
be supported by a 
neutral network
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Structural disassortativity in the range [ ks , kmax ]

q kmax = kmin N 1/(ɣ -1) natural cutoff (largest degree)

q ks structural cutoff (practical limit after which the 
network cannot be neutral)

Approximate analysis

Structural cutoff
q Molloy-Reed model (easier to treat)
q probability of a link is pij = ki⋅ kj /2L
q depends on node degrees only = (much) larger for hubs
q link of probability one for hubs of degree

ks = (2L)½ = (⟨k⟩N)½

trials

probability of a trial
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Structural effect wrap-up

Natural vs structural cutoffs

q kmax = kmin N1/(ɣ -1)

q kS = (⟨k⟩ N)½

kS < kmax for ½ < 1/(ɣ-1), that is, ɣ < 3

q structural disassortativity is active only in the 
ultra-small-world regime

q random graphs (ɣ ≥ 3) do not have structural 
cutoff, i.e., they are neutral



29

Real networks
neutral assortative assortative

assortative assortative

disassortative

disassortativeneutral

structural 
disassortativity

Social networks are assortative, most with a structural cutoff
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Randomization curve

Check with the yellow R-S curve (null model/unbiased):

q it is a degree preserving randomization
q at each randomization step we check that we do not 

have more than one link between any node pairs 
q obtained for 100 independent trials
q If knn does not change à disassortativity is due to a 

structural reason (i.e., on the degree distribution)

q if something changes à deeper reasons

Real networks may look as disassortative because
q they really involve disassortative effects
q they do not but just have it as structural



Eco-chamber effect
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Cinelli, Morales, Galeazzi, Quattrociocchi, Starnini (2020) 
Echo chambers on social media: A comparative analysis
https://arxiv.org/pdf/2004.09603.pdf

https://arxiv.org/pdf/2004.09603.pdf
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Definition of echo-chamber
Coexistence of

q opinion polarization with respect to a controversial topic

q homophily in interactions
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Users’ leaning
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Echo-chamber effect in social networks
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Political leaning

Fac
eB
oo
k

Re
dd
it q Same Topic: News

q Same leaning
assigned to news 
sources

q Different platforms: 
Facebook has a strong 
social feeding
algorithm, Reddit has
not

q Different
characteristics: 
Facebook shows 
segregation among
groups with different
leaning, Reddit has
one group



Polarization in pro-life/pro-choice networks
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Lejla Dzanko, Giulia Rizzoli, Sanja Milijanovic, Sara Shena, Lara Malin Schwarz
IP3 2019/20
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Background

Abortion is one of the most controversial topics in social 
public, political and scientific debates in different
disciplines

Often debates result in reforms of the law → USA 2019

Two movements: 
q Pro-Life: every human (embryo) has the right to live; 

abortion is murder → goal to ban it
q Pro-Choice: every woman should have the right to 

decide what to do with her body on her own → goal 
to keep abortion safe and legal
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Data collection

Pro-Choice Pro-Life

#prochoice
#mybodymychoice
#abortionishealthcare
#abortionisawomansright
#abortionrights
#abortionismurder
#abortionsupportnetwork
#proabortion

#prolife
#savethebabies
#babiesarehuman
#chooselife
#abortionban
#abortionismurder
#lovethemboth
#whywemarch
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Hashtag network disassortativity
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PageRank centrality
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Hashtag polarization

● Measure of hashtags centralities among the two dataset
● Extract which opinion an hashtag holds



42

Hashtag polarization
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Polarization effects
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Polarization effects

Absence of a debate? 


