Network Science

#4 Preferential attachment

© 2020 T. Erseghe

Preferential attachment

Network expansion model

Q

- □ How to generate a network with arbitrary distribution p_k ?
- How to provide a justification to the power law?

Α

Use the network expansion model

Network expansion model

#1. Growth

- Erdös-Rényi is a static network
- Real networks are dynamic: they expand through the addition of new nodes

e.g., www, citation network, actor network

Network expansion model

- #2. Preferential attachment
- Nodes link to the more connected nodes

e.g., think of www

This idea has a long history

Explaining preferential attachment

Citation network

researchers decide what papers to read and cite by "copying" references from papers they have read \rightarrow papers with more citations are more likely to be cited

Social network

the more acquaintances an individual has, the higher the chancer of getting new friends, i.e., we "copy" the friends of friends \rightarrow difficult to get friends if you have none

This is called the copying model

Barabási-Albert model [1999]

Start with m_0 nodes arbitrarily connected, with $\langle k \rangle$ =m

Growth:

add a node (the *N*th) with *m* links that connect the node to nodes in the network

□ Preferential attachment: $p_i = k_i / C$ probability of connecting to node *i* $p_i = 1 / C$ for self-loops $C = 1 + \sum_i k_i = 1 + 2(N-1)m$

Example with *m*=1

Barabási-Albert model

- Depending on the implementation there might be self/multiple links
- Most nodes have a small degree (exactly *m* for the youngest ones)
- Hubs appear
- □ The average degree is $\langle k \rangle = 2m$, and in fact $L = Nm = \frac{1}{2}\langle k \rangle N$ P_k
- The resulting degree distribution is always a power-law with exponent y = 3

Approximate analysis

Increase in the degree (at each step)

$$\Delta k_i \simeq m \cdot k_i / (1+2m(N-1)) \simeq k_i / 2N$$
trials probability per trial

Approximation in the continuous domain

$$\Delta k_i \simeq \mathrm{d} k_i / \mathrm{d} N \rightarrow \mathrm{d} k_i / k_i \simeq \frac{1}{2} \mathrm{d} N / N$$

Integration

$$\ln(k_i) = \frac{1}{2} \ln(N) + \text{cost.} \rightarrow k_i = c N^{\frac{1}{2}}$$

■ Recalling that node *i* joins the network at time N = i $k_i(N=i) = m \rightarrow k_i(N) = m (N/i)^{\frac{1}{2}}$

1/2 is the dynamic exponent

Implications of $k_i = m (N/i)^{\frac{1}{2}}$

- k_i sub-linearly increases as a power law with exponent ½ – all nodes follow the same dynamics
- The growth is sub-linear, due to the fact that nodes are competing with the others
- The earlier the node is added, the higher the degree "first-mover advantage" in marketing and business
- □ The rate of acquiring new links $dk_i/dN = \frac{1}{2}m/(N i)^{\frac{1}{2}}$ indicates that older nodes acquire more links
- This explains the hub formation in the Barabási-Albert model

Example

12

Approximate analysis (cont'd)

Recall $k_i = m (N/i)^{\frac{1}{2}}$

■ The number of nodes with degree smaller than k is $k_i < k \rightarrow m (N/i)^{\frac{1}{2}} < k$ $\rightarrow i > N (m/k)^2 \rightarrow N - N (m/k)^2$

CDF is
$$P_k = P[k_i \le k] = 1 - (m/k)^2$$

The degree distribution is
 $dP_k / dk = p_k = 2 m^2 / k^3$
but the correct expression is
 $2m(m+1)/k(k+1)(k+2)$
(tedious)

Implications of $p_k = 2m^2/k^3$

- The exponent y = 3 is correctly guessed
- The degree exponent is independent of m^{\checkmark}
- The scaling coefficient is proportional to $m^2 \checkmark$
- \Box The degree distribution is independent of N \checkmark

Measuring preferential attachment

We measure $\Pi(k_i) = \Delta k_i / \Delta N$

 \Box It is expected to be equal to $k_i / \sum_i k_j$

To minimize the noise effect we plot $\pi(k) = \sum_{k_i=1}^{k} \Pi(k_i)$ We expect that:

Under preferential attachment $\pi(k) \sim k^2$

□ In the absence of p.a $\pi(k) \sim k$

Measuring preferential attachment

Pros and cons of the Barabási-Albert model

- Better explanations than Erdös-Renyi
- Generates a scale-free network
- Predicts $\gamma = 3$ but real networks have $2 < \gamma < 5$
- Generates an undirected network (many real networks are directed)
- □ It is a minimal proof-of-principle model

Attractiveness

Attractiveness

- A modelling flaw of Barabási-Albert: oldest nodes have an inherent advantage and cannot be defeated (*first mover's advantage*)
- □ They become hubs, $k_i \simeq m (N/i)^{\frac{1}{2}}$
- This is in contrast with intuition and evidence

e.g., Altavista [90's] → Google [2000] → Facebook [2011]

add the idea of "attractivenes"

- Basic idea: let us try to model the innate ability of a node to attract links
 - it does not depend on age
 - just a quality assessment of the individual that we assume to be determined at birth
- \Box Call it the fitness η of a node
- Motivation
 - some people have an innate charisma some websites attract immediate interest some companies are good at alliances

The model:

- □ Growth at time step N a new node *i*=N is added with *m* links and fitness η_i
- □ Fitness is a random number drawn from a given fitness distribution $\rho(\eta)$
- □ Preferential attachment probability of linking to node *i* is proportional to both the degree and the fitness, i.e., $p_i = \frac{k_i \eta_i}{\sum_j k_j \eta_j}$

The Bianconi-Barabási model (a.k.a. the fitness model) tries to capture that:

- Nodes with higher degree have higher visibility and can better exploit fitness
- Among nodes with the same degree, the one with highest fitness is preferred
- A newcomer can conquer more connections than older nodes if it has a better fitness

We guess $k_i \simeq m (N/i)^{\beta(\eta_i)}$ for some $\beta(\eta)$ MIME.

Approximate analysis

 \square Mo guass $k \sim m (M/i)\beta(n_i)$

↓ we guess
$$k_i \simeq m (N/I)^{p < m}$$

↓ trials probability per trial
↓ Increase in the degree $\Delta k_i \simeq m \cdot k_i \eta_i / \sum k_j \eta_j$
↓ It is $\sum k_j \eta_j \simeq m N \cdot C$ (see proof)
Hence:

1. By inspection of the above

 $\Delta k_i \simeq m \ (N/i)^{\beta(\eta_i)} \eta_i / N C$

2. By continuum theory

 $\Delta k_i \simeq dk_i / dN \simeq m \beta(\eta_i) N^{\beta(\eta_i) - 1} i^{-\beta(\eta_i)}$

3. By combining the results $\beta(\eta_i) \simeq \eta_i / C$

Proof

• Analysis of denominator $\sum k_i \eta_i$ \rightarrow average value wrt η \rightarrow hypothesis $k_i \simeq m (N/i)^{\beta(\eta_i)}$ $\Box A = E[\sum_{i} k_{i} \eta_{i}] = \sum E[k_{i} \eta_{i}] \simeq \int_{1}^{N} E[k_{i} \eta_{i}] di$ $\Box E[k_i\eta_i] = \int m(N/i)^{\beta(\eta)} \eta \cdot \rho(\eta) \, \mathrm{d}\eta$ Swap integrals $A \simeq \int m N^{\beta(\eta)} \left[\int_{1}^{N} i^{-\beta(\eta)} di \right] \eta \cdot \rho(\eta) d\eta$ Integrate constant C $A \simeq m N \cdot \int (\underline{1 - N^{p+q-1}}) \eta \rho(\eta) \, \mathrm{d}\eta$ negligible for large *N* if $0 < \beta < 1$

MIME

On the constant C

Since we assumed $\beta < 1$, it is $C > \eta_{max} \rightarrow$ the integral makes sense

Approximate analysis (cont'd)

Want to identify $P_k = P[k_i \le k] = 1 - P[k_i > k]$

- $\square k_i > k \text{ and } k_i = m (N/i)^{\eta_i/C} \rightarrow i < N (m/k)^{C/\eta_i}$
- Hence $P[k_i > k | \eta_i] = (m/k)^{C/\eta_i}$
- We have $P_k = 1 \int (m/k)^{C/\eta} \rho(\eta) d\eta$

The degree distribution is

$$p_{k} = P_{k}' = C \int_{0}^{\eta_{\text{max}}} \eta^{-1} m^{C/\eta} k \frac{-(C/\eta + 1)}{f} \rho(\eta) d\eta$$

weighted combination of power laws with
exponent in [2,\infty) since $\eta_{\text{max}} < C$

Bianconi Barabasi wrap-up

- □ Preferential attachment proportional to both the degree and the fitness, i.e., $p_i = k_i \eta_i / \sum k_j \eta_j$
- $\square \text{ Node growth } k_i \simeq m (N/i) \eta^{i/C}$ $\eta_{max} \qquad \text{fitness distribution}$
- Constant *C* defined by $\int_{0}^{\eta_{\text{max}}} (C/\eta 1)^{-1} \rho(\eta) d\eta = 1$

The degree distribution is

$$p_{k} = P_{k}' = \bigcup_{0}^{\eta_{\text{max}}} \eta^{-1} m^{C/\eta} k^{-(C/\eta+1)} \rho(\eta) d\eta$$

weighted combination of power laws with
exponent in [2, \infty) since $\eta_{\text{max}} < C$

MIME

Equal fitness

What if $\rho(\eta) = \delta(\eta-1)$? Coefficient C = 2 since $\int_{0}^{\eta_{\text{max}}} (C/\eta - 1)^{-1} \delta(\eta-1) \, \mathrm{d}\eta = (C-1)^{-1} = 1$

Exponential degree $k_i \simeq m (N/i)^{\frac{1}{2}}$ Degree distribution $p_k = C \int_0^{\eta_{\max}} \eta^{-1} m^{C/\eta} k^{-(C/\eta+1)} \delta(\eta-1) d\eta = 2 m^2 k^{-3}$

Back to Barabási-Albert model !!!

Uniform fitness

What if
$$\rho(\eta) = 1$$
 and $\eta_{max} = 1$?
Coefficient $C = 1.255$ since

$$\int_{0}^{1} (C/\eta - 1)^{-1} d\eta = 1 \rightarrow e^{-2/C} = 1 - 1/C$$
Exponential degree $k_{i} \simeq m (N/i)^{\eta_{i}/C}$
Each node has its own dynamic exponent !!

Degree distribution

$$p_{k} = C/\eta k \int_{0}^{1} e^{-C \ln(k/m)/\eta} d\eta \sim \frac{k^{-(1+C)} / \ln(k)}{1}$$

$$e^{-b} - b E_{1}(b), b = C \ln(k/m)$$
exponential integral E₁

Uniform fitness

Degree distribution $p_k \sim k^{-(1+C)} / \ln(k)$

Measuring fitness

Idea: compare the node's degree dynamics to that of other nodes

Recall:
$$\ln(k_i) = \eta_i \ln(N)/C + \ln(m_i - \eta_i/C)$$

$$\uparrow_{\text{linear in } \ln(N)} \uparrow_{\text{constant in } N}$$

Fitness of the www

Fitness well approximated with an exponential: most nodes have small attractiveness, only a few large hubs

$$\square \rho(\eta) = a e^{-a\eta} / (1-e^{-a}), \eta_{max} = 1$$

Many other ideas for extension

Lessons learned

MODEL CLASS	EXAMPLES	CHARACTERISTICS
Static Models	Erd ő s–Rényi Watts-Strogatz	 <i>N</i> fixed <i>p_k</i> exponentially bounded Static, time independent topologies
Generative Models	Configuration Model Hidden Parameter Model	 Arbitrary pre-defined <i>p_k</i> Static, time independent topologies
Evolving Network Models	Barabási–Albert Model Bianconi-Barabási Model Initial Attractiveness Model Internal Links Model Node Deletion Model Accelerated Growth Model Aging Model	 <i>p_k</i> is determined by the processes that contribute to the network's evolution. Time-varying network topologies

A.L. Barabási, Network science

http://barabasi.com/networksciencebook

Ch.5 "The Barabási-Albert model"

Ch.6 "Evolving networks"

