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Preferential attachment
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Network expansion model
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Q
q How to generate a network with arbitrary 

distribution pk?
q How to provide a justification to the 

power law?

A
q Use the network expansion model



Network expansion model
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#1. Growth
q Erdös-Rényi is a sta=c network
q Real networks are dynamic: they expand

through the addi=on of new nodes 
e.g., www, cita=on network, actor network



Network expansion model
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#2. Preferential attachment
q Nodes link to the more connected nodes 

e.g., think of www

q This idea has a long history
1923

1925

1931

1941

1955

1968

1976 1999

Matthew effect: “rich gets 
richer”, i.e., high connectivity 
quantifies attractiveness 



Explaining preferential attachment
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q Citation network 
researchers decide what papers to read and cite by 
“copying” references from papers they have read à
papers with more citations are more likely to be cited

q Social network
the more acquaintances an individual has, the higher 
the chancer of getting new friends, i.e., we “copy” the 
friends of friends à difficult to get friends if you have 
none

This is called the copying model



Barabási-Albert model [1999]
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Start with m0 nodes arbitrarily connected, with ⟨k⟩=m

q Growth: 

add a node (the Nth) with m links that connect 

the node to nodes in the network

q Preferential attachment: 

pi = ki /C probability of connecting to node i
pi = 1/C for self-loops

C = 1 + ∑  ki = 1 + 2(N-1)m
i



Example with m=1
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Barabási-Albert model 
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q Depending on the implementa6on there might 
be self/mul6ple links

q Most nodes have a small degree (exactly m for 
the youngest ones)

q Hubs appear
q The average degree is 
⟨k⟩ = 2m, and in fact
L = Nm = ½⟨k⟩N

q The resul6ng degree 
distribu6on is always 
a power-law with 
exponent ɣ = 3



Approximate analysis 
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q Increase in the degree (at each step)

Δki≃ m ⋅ ki / (1+2m(N-1)) ≃ ki / 2N
trials probability per trial

q Integration

ln(ki) = ½ ln(N) + cost. à ki = c N½

½ is the dynamic 
exponent

q Approxima@on in the con@nuous domain

Δki≃ dki/dN à dki/ki ≃ ½ dN/N

q Recalling that node i joins the network at time N = i

ki (N=i) = m à ki (N) = m (N/i)½



Implications of ki = m (N/i)½
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q ki sub-linearly increases as a power law with 
exponent ½ – all nodes follow the same dynamics

q The growth is sub-linear, due to the fact that nodes 
are competing with the others

q The earlier the node is added, the higher the 
degree – “first-mover advantage” in marketing and 
business

q The rate of acquiring new links dki /dN = ½m/(N i)½  

indicates that older nodes acquire more links

q This explains the hub formation in the Barabási-
Albert model



Example
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t½



Approximate analysis (cont’d)
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q Recall ki = m (N/i)½

q The number of nodes with degree smaller than k is

ki < k  à m (N/i)½ < k 

à i > N (m/k)2    à N - N (m/k)2

q CDF is Pk = P[ki≤k] = 1 - (m/k)2

q The degree distribution is

dPk /dk = pk = 2 m2 / k3   

but the correct expression is 
2m(m+1)/k(k+1)(k+2)

(tedious)



Implications of pk = 2m2/k3 
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q The exponent ɣ = 3 is correctly guessed

q The degree exponent is independent of m ✔

q The scaling coefficient is propor:onal to m2 ✔

q The degree distribu:on is independent of N ✔

increasing 
m=1,3,5,…



Measuring preferential attachment
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We measure Π(ki) = Δki /ΔN

q It is expected to be equal to ki / ∑ kjj

ki =1

k
To minimize the noise effect we plot !(k) = ∑  Π(ki) 

We expect that:

q Under preferenFal aGachment !(k) ~ k2

q In the absence of p.a !(k) ~ k



Measuring preferen-al a/achment
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k2

k



Pros and cons of the Barabási-Albert model
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q Better explanations than Erdös-Renyi

q Generates a scale-free network
q Predicts ɣ = 3 but real networks have 2< ɣ <5

q Generates an undirected network (many real 
networks are directed)

q It is a minimal proof-of-principle model



A"rac&veness
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Attractiveness
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q A modelling flaw of Barabási-Albert: 
oldest nodes have an inherent advantage 
and cannot be defeated (first mover’s 
advantage)

q They become hubs, ki ≃ m (N/i)½

q This is in contrast with intuition and 
evidence

e.g., Altavista [90’s] à Google [2000] à Facebook [2011]

add the idea of “attractivenes”



Bianconi-Barabási model
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q Basic idea: let us try to model the innate 
ability of a node to attract links

it does not depend on age
just a quality assessment of the individual 
that we assume to be determined at birth

q Call it the fitness ! of a node
q Motivation

some people have an innate charisma
some websites attract immediate interest
some companies are good at alliances



Bianconi-Barabási model
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The model:
q Growth – at time step N a new node i=N is 

added with m links and fitness !i

q Fitness is a random number drawn from a 
given fitness distribution "(!)

q Preferential attachment - probability of 
linking to node i is proportional to both the 
degree and the fitness, i.e., pi = ki!i / ∑ kj!jj



Bianconi-Barabási model
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The Bianconi-Barabási model (a.k.a. the fitness 
model) tries to capture that:
q Nodes with higher degree have higher 

visibility and can better exploit fitness
q Among nodes with the same degree, the 

one with highest fitness is preferred
q A newcomer can conquer more connections 

than older nodes if it has a better fitness



Bianconi-Barabási model
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We guess ki ≃m (N/i)"(#i) for some "(#) 



Approximate analysis
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q We guess  ki ≃m (N/i)"(#i) 

q Increase in the degree  Δki≃ m ⋅ ki #i / ∑ kj#j

q It is ∑ kj#j ≃ m N⋅ C  (see proof)

Hence:
1. By inspection of the above

Δki≃m (N/i)"(#i) #i / N C
2. By continuum theory

Δki≃ dki /dN ≃m "(#i) N "(#i) - 1 i -"(#i)

3. By combining the results  "(#i)≃ #i / C

trials probability per trial



Proof
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q Analysis of denominator ∑ ki!i

à average value wrt !
à hypothesis ki ≃ m (N/i)#(!i)

q A = E[ ∑ ki!i ] = ∑ E[ki!i] ≃ ∫ E[ki!i] di
q E[ki!i] = ∫ m(N/i)#(!) ! ⋅ %(!) d!
q Swap integrals

A ≃ ∫ m N#(!) [∫ i -#(!) di ] ! ⋅ %(!) d!

1

N

1

N

i

q Integrate

A ≃m N⋅ ∫ (1 - N#(!)-1) ! %(!) d!
1-#(!)

constant C

negligible for large N if 0 < # < 1



On the constant C
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Check consistency of 

0 < !(") = " / C < 1
C = ∫  " #(") d" à 1 = ∫ (C/" - 1)-1 #(") d"

1-!(")
0

"max

Since we assumed !<1, it is C > "max à the integral 
makes sense

growth with 
exponent <1

this identifies C for a given #(")



Approximate analysis (cont’d)
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Want to identify Pk = P[ki ≤ k] = 1 – P[ki > k]

q ki > k and ki = m (N/i)!i/C à i < N (m/k) C/!i

q Hence P[ki > k|!i] = (m/k) C/!I

q We have Pk = 1 – ∫ (m/k) C/! "(!) d!

The degree distribution is 

pk = Pk’ =   C ∫ !-1 mC/! k -(C/!+1)"(!) d!
0

!max

weighted combination of power laws with 
exponent in [2,∞) since !max < C



Bianconi Barabasi wrap-up
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The degree distribution is 

pk = Pk’ =   C ∫ !-1 mC/! k -(C/!+1)"(!) d!
0

!max

weighted combina1on of power laws with 
exponent in [2,∞) since !max < C

q Preferen>al a@achment propor>onal to both the 
degree and the fitness, i.e., pi = ki!i / ∑ kj!j

q Node growth ki ≃m (N/i) !i/C

q Constant C defined by  ∫ (C/! - 1)-1 "(!) d! = 1
0

!max
fitness distribution



Equal fitness
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What if !(") = #("-1) ?
q Coefficient C = 2 since

∫    (C/" - 1)-1 #("-1) d" = (C - 1)-1 = 1

q Exponential degree ki ≃m (N/i) ½ 

0

"max

Degree distribution

pk =  C ∫ "-1 mC/" k -(C/"+1)#("-1) d" = 2 m2 k -3

Back to Barabási-Albert model !!!

0

"max



Uniform fitness
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What if !(") = 1 and "max = 1 ?
q Coefficient C = 1.255 since

∫   (C/" - 1)-1 d" = 1  à e-2/C = 1-1/C 

q Exponential degree ki ≃m (N/i) "i/C

q Each node has its own dynamic exponent !!!

0

1

Degree distribution

pk =  C/"k  ∫ e -C ln(k/m)/" d" ∼ k -(1+C) / ln(k)
0

1

e-b – b E1(b) ,  b = C ln(k/m)
exponential integral E1



Uniform fitness
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Degree distribu1on pk ∼ k -(1+C) / ln(k)
corrective term

C = 1.255



Measuring fitness
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Idea: compare the node’s degree dynamics to that of 
other nodes
Recall: ln(ki) = !i ln(N)/C + ln(m i -!i/C )

constant in Nlinear in ln(N)



Fitness of the www
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Fitness well approximated with an exponential: most 
nodes have small attractiveness, only a few large hubs
q !(") =  a e-a" / (1-e-a), "max=1



Many other ideas for extension
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Lessons learned
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Readings
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q A.L. Barabási, Network science
http://barabasi.com/networksciencebook

Ch.5 “The Barabási-Albert model”
Ch.6 “Evolving networks”

http://barabasi.com/networksciencebook

