Network Science

\#4 Preferential attachment
© 2020 T. Erseghe

Preferential attachment

Network expansion model

Q
\square How to generate a network with arbitrary distribution p_{k} ?
\square How to provide a justification to the power law?

A
\square Use the network expansion model

Network expansion model

\#1. Growth

\square Erdös-Rényi is a static network
\square Real networks are dynamic: they expand through the addition of new nodes
e.g., www, citation network, actor network

Network expansion model

\#2. Preferential attachment

\square Nodes link to the more connected nodes
e.g., think of www
\square This idea has a long history

György Pólya PÓLYA PROCESS mathematician

1931 WEALTH DISTRIBUTION

George Udmy Yule YULE PROCESS STATISTICIAN

George Kinsley Zipf
economist

Herbert Alexander Simon

1941 MASTER EQUATION

Robert Gibrat PROPORTIONAL GROWTH ECONOMIST

1968

Derek de Solla Price CUMULATIVE ADVANTAGE

PHYSICIST

Robert Merton MATTHEW EFFECT SOCIOLOGIST

1999

Albert-László Barabási \& Réka Albert PREFERENTIAL ATTACHMENT network scientists

Explaining preferential attachment

\square Citation network
researchers decide what papers to read and cite by "copying" references from papers they have read \rightarrow papers with more citations are more likely to be cited
\square Social network
the more acquaintances an individual has, the higher the chancer of getting new friends, i.e., we "copy" the friends of friends \rightarrow difficult to get friends if you have none

This is called the copying model

Barabási-Albert model [1999]

Start with m_{0} nodes arbitrarily connected, with $\langle k\rangle=m$
\square Growth:
add a node (the N th) with m links that connect the node to nodes in the network
\square Preferential attachment:

$$
\begin{aligned}
& p_{i}=k_{i} / C \text { probability of connecting to node } i \\
& p_{i}=1 / \mathrm{C} \text { for self-loops } \\
& \qquad C=1+\sum_{i} k_{i}=1+2(N-1) m
\end{aligned}
$$

Example with $m=1$

MiME.

Barabási-Albert model

\square Depending on the implementation there might be self/multiple links
\square Most nodes have a small degree (exactly m for the youngest ones)
\square Hubs appear
\square The average degree is $\langle k\rangle=2 m$, and in fact $L=N m=1 / 2\langle k\rangle N$
\square The resulting degree distribution is always a power-law with exponent $\gamma=3$

Approximate analysis

\square Increase in the degree (at each step)

$$
\Delta k_{i} \simeq \underset{\substack{\uparrow \\ \text { trials }}}{m} \cdot \underset{\substack{\text { probability per trial }}}{k_{i} /(1+2 m(N-1)) \simeq k_{i} / 2 N}
$$

\square Approximation in the continuous domain

$$
\Delta k_{i} \simeq \mathrm{~d} k_{i} / \mathrm{d} N \rightarrow \mathrm{~d} k_{i} / k_{i} \simeq 1 / 2 \mathrm{~d} N / N
$$

- Integration

$$
\ln \left(k_{i}\right)=1 / 2 \ln (N)+\text { cost. } \rightarrow k_{i}=c N^{1 / 2}
$$

Recalling that node i joins the network at time $N=i$

$$
k_{i}(N=i)=m \rightarrow k_{i}(N)=m\left(\mathrm{~N} / \mathrm{i}^{1 / 2} .\right.
$$

Implications of $k_{i}=m(N / i)^{1 / 2}$

$\square k_{i}$ sub-linearly increases as a power law with exponent $1 / 2-$ all nodes follow the same dynamics
\square The growth is sub-linear, due to the fact that nodes are competing with the others
\square The earlier the node is added, the higher the degree - "first-mover advantage" in marketing and business
\square The rate of acquiring new links $\mathrm{d} k_{i} / \mathrm{d} N=1 / 2 m /(\mathrm{Ni})^{1 / 2}$ indicates that older nodes acquire more links
\square This explains the hub formation in the BarabásiAlbert model

Example

Approximate analysis (cont’d)

\square Recall $k_{i}=m(\mathrm{~N} / \mathrm{i})^{1 / 2}$
\square The number of nodes with degree smaller than k is

$$
\begin{aligned}
k_{i}<k & \rightarrow m(N / i)^{1 / 2}<k \\
& \rightarrow i>N(m / k)^{2} \rightarrow N-N(m / k)^{2}
\end{aligned}
$$

\square CDF is $P_{k}=\mathrm{P}\left[k_{i} \leq k\right]=1-(m / k)^{2}$
\square The degree distribution is

$$
\mathrm{d} P_{k} / \mathrm{d} k=p_{k}=2 m^{2} / k^{3} \text { but the correct expression is } \begin{gathered}
2 m(m+1) / k(k+1)(k+2) \\
\text { (tedious) }
\end{gathered}
$$

MiME.

Implications of $p_{k}=2 m^{2} / k^{3}$

\square The exponent $\gamma=3$ is correctly guessed
\square The degree exponent is independent of m
\square The scaling coefficient is proportional to $m^{2} \downarrow$
\square The degree distribution is independent of N^{\checkmark}

Measuring preferential attachment

We measure $\Pi\left(k_{i}\right)=\Delta k_{i} / \Delta N$
\square It is expected to be equal to $k_{i} / \sum_{j} k_{j}$

To minimize the noise effect we plot $\pi(k)=\sum_{k=1}^{k} \Pi\left(k_{i}\right)$ We expect that:
\square Under preferential attachment $\pi(k) \sim k^{2}$
\square In the absence of p.a $\pi(k) \sim k$

Measuring preferential attachment

MiME.

Pros and cons of the Barabási-Albert model

\square Better explanations than Erdös-Renyi
\square Generates a scale-free network
Predicts $\gamma=3$ but real networks have $2<\gamma<5$
\square Generates an undirected network (many real networks are directed)
It is a minimal proof-of-principle model

Attractiveness

MiME.

Attractiveness

\square A modelling flaw of Barabási-Albert: oldest nodes have an inherent advantage and cannot be defeated (first mover's advantage)
\square They become hubs, $k_{i} \simeq m(N / i)^{1 / 2}$
\square This is in contrast with intuition and evidence
e.g., Altavista [90's] \rightarrow Google [2000] \rightarrow Facebook [2011]
add the idea of "attractivenes"

Bianconi-Barabási model

\square Basic idea: let us try to model the innate ability of a node to attract links
it does not depend on age
just a quality assessment of the individual that we assume to be determined at birth
\square Call it the fitness η of a node
\square Motivation
some people have an innate charisma some websites attract immediate interest some companies are good at alliances

Bianconi-Barabási model

The model:
\square Growth - at time step N a new node $i=N$ is added with m links and fitness η_{i}
\square Fitness is a random number drawn from a given fitness distribution $\rho(\eta)$
\square Preferential attachment - probability of linking to node i is proportional to both the degree and the fitness, i.e., $p_{i}=k_{i} \eta_{i} / \sum_{j} k_{j} \eta_{j}$

Bianconi-Barabási model

The Bianconi-Barabási model (a.k.a. the fitness model) tries to capture that:
\square Nodes with higher degree have higher visibility and can better exploit fitness
\square Among nodes with the same degree, the one with highest fitness is preferred
\square A newcomer can conquer more connections than older nodes if it has a better fitness

Bianconi-Barabási model

We guess $k_{i} \simeq m(N / i)^{\beta\left(\eta_{i}\right)}$ for some $\beta(\eta)$

Approximate analysis

\square We guess $k_{i} \simeq m(N / i)^{\beta\left(\eta_{i}\right)}$
\square Increase in the degree $\Delta k_{i} \simeq \stackrel{\substack{m \\ \text { trials }}}{\substack{\text { probability } \\ i \\ \dagger \\ \eta_{i}}} / \sum k_{j} \eta_{j}$
\square It is $\sum k_{j} \eta_{\mathrm{j}} \simeq m N \cdot C$ (see proof)
Hence:

1. By inspection of the above

$$
\Delta k_{i} \simeq m(N / i)^{\beta\left(\eta_{i}\right)} \eta_{i} / N C
$$

2. By continuum theory

$$
\Delta k_{i} \simeq \mathrm{~d} k_{i} / \mathrm{d} N \simeq m \beta\left(\eta_{i}\right) N^{\beta\left(\eta_{i}\right)-1} i_{i-\beta\left(\eta_{i}\right)}
$$

3. By combining the results $\beta\left(\eta_{i}\right) \simeq \eta_{i} / C$

Proof

\square Analysis of denominator $\sum k_{i} \eta_{i}$
\rightarrow average value wrt η
\rightarrow hypothesis $k_{i} \simeq m(N / i)^{\beta\left(\eta_{i}\right)}$
$\square \mathrm{A}=\mathrm{E}\left[\sum_{i} k_{i} \eta_{\mathrm{i}}\right]=\sum \mathrm{E}\left[k_{i} \eta_{\mathrm{i}}\right] \simeq \int_{1}^{N} \mathrm{E}\left[k_{i} \eta_{i}\right] \mathrm{d} i$
$\square \mathrm{E}\left[k_{i} \eta_{i}\right]=\int m(N / i)^{\beta(\eta)} \eta \cdot \rho(\eta) \mathrm{d} \eta$
\square Swap integrals

$$
\mathrm{A} \simeq \int m N^{\beta(\eta)}\left[\int_{1}^{N} i^{-\beta(\eta)} \mathrm{d} i\right] \eta \cdot \rho(\eta) \mathrm{d} \eta
$$

- Integrate
constant C

$$
\mathrm{A} \simeq m N \cdot \int \frac{\left(1-\mathrm{A}^{\beta}(\hat{N})-1\right.}{1-\beta(\eta)} \eta \rho(\eta) \mathrm{d} \eta
$$

On the constant C

Check consistency of

$$
\begin{aligned}
& 0<\beta(\eta)=\eta / C<1 \\
& C=\frac{\int \eta \rho(\eta)}{1-\beta(\eta)} \mathrm{d} \eta \\
& \text { this identifies C for a given } \rho(\eta)
\end{aligned}
$$

Since we assumed $\beta<1$, it is $C>\eta_{\max } \rightarrow$ the integral makes sense

Approximate analysis (cont’d)

Want to identify $P_{k}=\mathrm{P}\left[k_{i} \leq k\right]=1-\mathrm{P}\left[k_{i}>k\right]$
$\square k_{i}>k$ and $k_{i}=m(N / i)^{\eta_{i} / C} \rightarrow i<N(m / k)^{C / \eta_{i}}$
\square Hence $\mathrm{P}\left[k_{i}>k \mid \eta_{\mathrm{i}}\right]=(m / k)^{c / \eta i}$
\square We have $P_{k}=1-\int(m / k)^{c / \eta} \rho(\eta) \mathrm{d} \eta$

The degree distribution is

$$
p_{k}=P_{k}^{\prime}=C \int_{0}^{\eta_{\max }} \eta^{-1} m^{C / \eta} k^{-(C / \eta+1)} \rho(\eta) \mathrm{d} \eta
$$

weighted combination of power laws with exponent in $[2, \infty)$ since $\eta_{\max }<C$

Bianconi Barabasi wrap-up

\square Preferential attachment proportional to both the degree and the fitness, i.e., $p_{i}=k_{i} \eta_{i} / \sum k_{j} \eta_{j}$
\square Node growth $k_{i} \simeq m(N / i)^{\text {ni/c }}$
fitness distribution
\square Constant C defined by $\int_{0}^{\eta_{\max }}(C / \eta-1)^{-1} \rho^{\prime}(\eta) \mathrm{d} \eta=1$

The degree distribution is

$$
p_{k}=P_{k}^{\prime}=C \int_{0}^{\eta_{\max }} \eta^{-1} m^{C / \eta} k^{-(C / \eta+1)} \rho(\eta) \mathrm{d} \eta \mid
$$

Equal fitness

What if $\rho(\eta)=\delta(\eta-1)$?
\square Coefficient $C=2$ since

$$
\int_{0}^{\eta_{\max }}(\mathrm{C} / \eta-1)^{-1} \delta(\eta-1) \mathrm{d} \eta=(\mathrm{C}-1)^{-1}=1
$$

\square Exponential degree $k_{i} \simeq m(N / i)^{1 / 2}$
Degree distribution

$$
p_{k}=C \int_{0}^{\eta_{\text {max }}} \eta^{-1} m^{c / \eta} k^{-(c / \eta+1)} \delta(\eta-1) \mathrm{d} \eta=2 m^{2} k^{-3}
$$

Back to Barabási-Albert model !!!

Uniform fitness

What if $\rho(\eta)=1$ and $\eta_{\text {max }}=1$?
\square Coefficient $C=1.255$ since

$$
\int_{0}^{1}(C / \eta-1)^{-1} \mathrm{~d} \eta=1 \rightarrow \mathrm{e}^{-2 / C}=1-1 / C
$$

\square Exponential degree $k_{i} \simeq m(N / i)^{\eta / C}$
\square Each node has its own dynamic exponent !!!
Degree distribution

$$
\begin{gathered}
p_{k}=C / \eta k \int_{0}^{1} e^{-C \ln (k / m) / \eta} \mathrm{d} \eta \sim k^{-(1+C)} / \ln (k) \\
\mathrm{e}^{-b}-b \mathrm{E}_{1}(b), b=C \ln (k / m)
\end{gathered}
$$

MiME. exponential integral E_{1}

Uniform fitness

Degree distribution $p_{k} \sim k^{-(1+C)} / \ln (k)$
corrective term

Measuring fitness

(d)

Idea: compare the node's degree dynamics to that of other nodes

Recall: $\ln \left(k_{i}\right)=\eta_{i} \ln (N) / C+\underset{\substack{\dagger \\ \text { linear in } \ln (N)}}{\ln \left(m_{i}^{i} i^{i-\eta / C}\right)}$

Fitness of the www

Fitness well approximated with an exponential: most nodes have small attractiveness, only a few large hubs
$\square \rho(\eta)=\mathrm{a} \mathrm{e}^{-a \eta} /\left(1-\mathrm{e}^{-a}\right), \eta_{\max }=1$

Many other ideas for extension

Elementary Processes Affecting the Network Topology
A summary of the elementary processes discussed in this section and their impact on the degree distribution. Each model is defined as extensions of the Barabási-Albert model.

Lessons learned

MODEL CLASS

Static Models

Generative Models

	Barabási-Albert Model Bianconi-Barabási Model Initial Attractiveness Model Evolving Network Models Internal Links Model Node Deletion Model Accelerated Growth Model Aging Model

CHARACTERISTICS

- N fixed
- p_{k} exponentially bounded
- Static, time independent topologies
- Arbitrary pre-defined p_{k}
- Static, time independent topologies
- p_{k} is determined by the processes that contribute to the network's evolution.
-Time-varying network topologies

Readings

\square A.L. Barabási, Network science
http://barabasi.com/networksciencebook
Ch. 5 "The Barabási-Albert model"
Ch. 6 "Evolving networks"

