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Network expansion model

Q

. How to generate a network with arbitrary
distribution p,?

. How to provide a justification to the
power law?

A
. Use the network expansion model
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Network expansion model

#1. Growth
] Erd6s-Rényi is a static network

] Real networks are dynamic: they expand
through the addition of new nodes

e.g., www, citation network, actor network
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Network expansion model

#2. Preferential attachment
] Nodes link to the more connected nodes

e.g., think of www
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Explaining preferential attachment

J Citation network

researchers decide what papers to read and cite by
“copying” references from papers they have read =2
papers with more citations are more likely to be cited

. Social network

the more acquaintances an individual has, the higher

the chancer of getting new friends, i.e., we “copy” the
friends of friends = difficult to get friends if you have
none

This is called the copying model
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Barabasi-Albert model [1999]

Start with m, nodes arbitrarily connected, with (k)=m

] Growth:
add a node (the Nth) with m links that connect
the node to nodes in the network

J Preferential attachment:
p; = k;/C probability of connecting to node i
p; = 1/C for self-loops
C=1+ 2, ki=1+2(N-1)m
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Example with m=1
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Barabasi-Albert model

1 Depending on the implementation there might
be self/multiple links

1 Most nodes have a small degree (exactly m for
the youngest ones)

1 Hubs appear !
1 The average degree is .-

10° E

(ky=2m, and infact .- .
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, ; < T :
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Approximate analysis

1 Increase in the degree (at each step)

Ak, = 71 -1k,./ (1+2m(N-1)) = k; / 2N

trials probability per trial

1 Approximation in the continuous domain
Ak; = dk/dN > | dk/k; = % dN/N |

J Integration
In(k;) =% In(N) + cost. 2 k;=c N*

1 Recalling that node i joins the network at time N =i
ki(N=i)=m >k (N) = m (N/iy*{_

% is the dynamic
exponent
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Implications of k; = m (N/i)”

[ k; sub-linearly increases as a power law with
exponent %2 — all nodes follow the same dynamics

. The growth is sub-linear, due to the fact that nodes
are competing with the others

1 The earlier the node is added, the higher the
degree — “first-mover advantage” in marketing and
business

[ The rate of acquiring new links dk; /dN = %m/(N i)*
indicates that older nodes acquire more links

1 This explains the hub formation in the Barabasi-
Albert model
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Approximate analysis (cont’d)

MiIiME.

1 Recall k;=m (N/i)”

] The number of nodes with degree smaller than k is

ki<k = m(N/i): <k

= i>N(m/k)? =2 |N-N(m/k)?

de/dk=

1 CDFis P, =P[k<k] = 1 - (m/k)?
1 The degree distribution is

pk=2m2/k3

™~

but the correct expression is
2m(m+1)/k(k+1)(k+2)
(tedious)
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Implications of p, = 2m?/k>

"he exponent y = 3 is correctly guessed

"he degree exponent is independent of m vV

"he scaling coefficient is proportional to m? v

L L UL

he degree distribution is independent of N v
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Measuring preferential attachment

We measure l(k;) = Ak; /AN
 Itis expected to be equal to k; / ijj

k
To minimize the noise effect we plot 1t(k) =5 MM(k;)
k =1
We expect that:
Jd Under preferential attachment 1t(k) ~ k?

1 In the absence of p.a Tt(k) ~ k

MiIiME.
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Measuring preferential attachment
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Pros and cons of the Barabasi-Albert model

] Better explanations than Erd6s-Renyi
1 Generates a scale-free network
1 Predicts y = 3 but real networks have 2< y <5

1 Generates an undirected network (many real
networks are directed)

It is a minimal proof-of-principle model
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Attractiveness
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Attractiveness

1 A modelling flaw of Barabasi-Albert:
oldest nodes have an inherent advantage
and cannot be defeated (first mover’s
advantage)

1 They become hubs, k; = m (N/i)”

 This is in contrast with intuition and
evidence

e.g., Altavista [90’s] = Google [2000] = Facebook [2011]

add the idea of “attractivenes”
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Bianconi-Barabasi model

] Basic idea: let us try to model the innate
ability of a node to attract links

it does not depend on age

just a quality assessment of the individual
that we assume to be determined at birth

J Call it the fitness n of a node

] Motivation
some people have an innate charisma
some websites attract immediate interest

some companies are good at alliances
MiME 20




Bianconi-Barabasi model

The model:

. Growth — at time step N a new node i=N is
added with m links and fitness n,

] Fitness is a random number drawn from a
given fitness distribution p(n)

. Preferential attachment - probability of
linking to node i is proportional to both the
degree and the fitness, i.e., p; = kn;/ > it
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Bianconi-Barabasi model

The Bianconi-Barabasi model (a.k.a. the fitness
model) tries to capture that:

1 Nodes with higher degree have higher
visibility and can better exploit fitness

1 Among nodes with the same degree, the
one with highest fitness is preferred

1 A newcomer can conguer more connections
than older nodes if it has a better fitness
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Bianconi-Barabasi model
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Approximate analysis

J We guess ‘ k: =m (N/i)Pn) ‘

trials  probability per trial
 Increase in the degree Ak; = r%v -kim;/ > ki,
 Itis 3 kin; = m N-C (seeproof
Hence:
1. By inspection of the above
Ak, =~m (N/i)Bm) n;/ NC
2. By continuum theory

Ak 2= dk; /AN =m B(n;) NFBm) -1 j-Blm)

3. By combining the results‘ﬁ(n,-) ~7,/C ‘
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1 Analysis of denominator > k7,

-> average value wrt 7
- hypothesis k; = m (N/i)P)

J A=E[3kn]1=2Elkn] z.[lNE[kﬂ’Ii] di
A Elkm] = | m(N/i)P 5 - p(n) dn
. Swap integrals
A =[ m NE® [[j60) di] 7 - p(n) diy
J Integrate constant C

A=mN- I(l-ﬁﬁ*‘éﬁ) n p(n) dn
1-B(n) \

\ 25
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On the constant C

Check consistency of growth with

0<Bn)=n/C <1/ _
C=[mplmdn >|1=] (C/n-1)"p(n)dn

1-p(n)

this identifies C for a given p(n)

Since we assumed <1, it is C>n,,, =2 the integral
makes sense
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Approximate analysis (cont’d)

Want to identify P, = P[k; < k] = 1 — P[k; > K]
d k;>kand k;=m (N/iy"/¢ = i< N (m/k) </
1 Hence P[k; > k|n,] = (m/k) </

1 We have P, =1— [ (m/k) " p(n) dn

The degree distribution is

Mmax
p=P¢ = C_{ ntmn kD p(n) dn

/

weighted combination of power laws with
exponent in [2,2°) since N« < C
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Bianconi Barabasi wrap-up

. Preferential attachment proportional to both the
degree and the fitness, i.e., p;=kn;/ 2 kn;

D NOde grOWth ki =m (N/I) e fitness distribution
nmax

 Constant C defined by [ (C/n - 1)* p’?n) dn=1
0

The degree distribution is

Mmax
p=P¢ = C_[ ntmn k '(C/‘/"”)P(U) dn
0
/

weighted combination of power laws with
exponent in [2,0°) since N0 < C
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Equal fitness

What if p(n) = 6(n-1) ?
[ Coefficient C = 2 since
Nmax
J (/- 1)1 8(n-1) dn = (C- 1)1 =1

 Exponential degree k; =~ m (N/i)”
Degree distribution
Nmax
pe= C| Tt me kA (n-1) dn = 2 m k3
0

Back to Barabasi-Albert model 11!

MiIiME.
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Uniform fitness

Whatif p(n)=1andn,x=1"7
J Coefficient C=1.255 since

I: (C/n-1)1dn=1 > e%=1-1/C
] Exponential degree k; =~m (N/i) /¢

. Each node has its own dynamic exponent !!!

Degree distribution

pi= C/nk [ e-cnbmisn dy ~| -3+ / In(k

|

eb—bE(b), b=ClIn(k/m)
MIiME exponential integral E; 30




Uniform fitness
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Measuring fithess

@ 9

1000 5000 10000 i 50000 100000

ldea: compare the node’s degree dynamics to that of
other nodes

Recall: In(k;) = n,In(N)/C + In(mT jmilC)
1

linear in In(N) constantin N
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Fitness of the www
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Fitness well approximated with an exponential: most
nodes have small attractiveness, only a few large hubs

d p(n)= ae/(1-€9), Nyay=1
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Many other ideas for extension

Elementary Processes Affecting the Network Topology
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Lessons learned

MODEL CLASS

Static Models

Generative Models

MiIiME.

EXAMPLES

Erdés-Rényi
Watts-Strogatz

Configuration Model
Hidden Parameter Model

Barabasi-Albert Model
Bianconi-Barabasi Model
Initial Attractiveness Model
Internal Links Model

Node Deletion Model
Accelerated Growth Model
Aging Model

CHARACTERISTICS

* N fixed
* p, exponentially bounded
e Static, time independent topologies

* Arbitrary pre-defined p,
* Static, time independent topologies

*p,is determined by the processes
that contribute to the network’s
evolution.

*Time-varying network topologies
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J A.L. Barabasi, Network science

http://barabasi.com/networksciencebook

Ch.5 “The Barabasi-Albert model”
Ch.6 “Evolving networks”
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