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Why a network model?

Want to devise a model for generating a network 
that looks like a real one

q The model should capture meaningful network 
parameters

q The model should explain how networks 
emerge

q The model can be used to test our algorithms:
many vs. few instances

2



Random networks
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Random networks

It seems that many connections arising in real 
networks are unpredictable

Idea:
q links are randomly generated, i.e., each link is 

active with probability p
q random = i.i.d. distributed

This seems sensible as we often observe 
unexpected links
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Erdös-Rényi model [1959/60]

q The random network is the simplest model:
pick a probability p, with 0<p<1
activate each link (i,j) with probability p

q The number of links is variable
q There might be isolates
q Easy to calculate fundamental parameters
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p=0.03
N=100



Binomial distribution
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P(k;n,p) = probability that k out of 
n trials are positive, where each is 

positive with probability p

binomial coefficient n!/k!(n-k)!



Degree distribution 

q The number of neighbours is binomially
distributed

P(k;n,p) = probability that a node has exactly k 
neighbours, with number of 
possible neighbours n = N-1

q Average # of neighbours
⟨k⟩ = (N-1)p   à p = ⟨k⟩/(N-1)

q Variance
σx

2 = (N-1)p(1-p) ≃ ⟨k⟩
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tight around the mean

p is usually very small (since ⟨k⟩ ≪ N)

this defines p



Poisson approximation

q Poisson distribution (easier to use)

q Very good approximation of binomial for small 
p (and at small k)

8

active part

P

[x = k] =

(n� k + 1) . . . (n� 1)n

n

k

| {z }
' 1

·m
k

x

k!

·
⇣
1� m

x

n

⌘
n�k

| {z }
' const

p

P [x = k] =
m

k

x

k!
· e�m

x



Are real networks Poisson?
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No! Poisson networks are deprived of hubs
… but, nevertheless, Poisson networks capture some aspects



Small world
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q In real networks distance between two 
randomly chosen nodes is generally short

q Milgram [1967]: 6 degrees of separation

q What does this mean? 
We are more connected than we think



Distances in random graphs
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q we reach ⟨k⟩ nodes in one hop, ⟨k⟩2 in two, ⟨k⟩3
in three, etc.

q an estimate of the average distance ⟨d⟩ is found 
by solving for N = ⟨k⟩⟨d⟩ to have

⟨d⟩= ln(N)/ln(⟨k⟩)
q ⟨d⟩ is often taken as an estimate of the network 

diameter dmax

e.g.: on earth we are N=7⋅109 individuals, 
with ⟨k⟩=1000 acquaintances each à ⟨d⟩ = 3.28



Fit in real networks
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Very good fit ! Correct at least as order of magnitude

✓
✓

✓

✓
✓

✓



What about structured networks?
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No fit !



Are real networks random?
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q Random networks are generally NOT a good 
model for real world scenarios, but
ü Are easy to describe and generate
ü Can make some correct predictions

ü Can serve as a general reference model
(in the sense that a model is good if it 
deviates from the random model as much as 
real networks do)



Scale-free networks
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Scale free networks
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=2.1 =2.3

they follow a power-law
ln(pk) = c - ɣ ⋅ ln(k)         à pk= C ⋅ k -ɣ

ɣ is the slope

The degree distribution of the www (Albert et al., 1999)



Poisson versus power-law
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Power-law is heavy tailed (presence of hubs) -
like Weibull, lognormal, Lévy 

ɣ = 2.1
⟨k⟩ = 11



The value of ɣ in real networks
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ɣ ∊ [2,4] , but the statistical fit is not always 
good (** = good fit with an exponential)



Is everything scale-free?
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Not all networks are scale-
free, e.g.:
q Networks appearing in 

material science, where all 
nodes have the same 
degree

q The neural network of the 
C.elegans worm

q The power grid, consisting 
of generators and switches 
connected by power lines



Scale-free networks

q A scale free network is a network whose degree 
distribution follows a power law pk = C ⋅ k -ɣ

q It is meaningful in an interval [kmin,kmax]

q The parameter ɣ (slope) is called the exponent

q C is determined by the total normalization
condition ∑      pk = 1 which we approximate to

∫ pk dk = C ⋅ kmin
-(ɣ-1) / (ɣ -1) = 1
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k=kmin

kmax

kmin

∞



The largest hub

The size of the largest hub is captured by
∫ pk dk = C ⋅ kmax

-(ɣ-1) / (ɣ -1) = 1/N

kmax = kmin N 1/(ɣ -1)   is the natural cutoff
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kmax

∞



Hubs are large in scale-free networks
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The highest degree increases in N polynomially
(sub-linearly) fast = big hubs



Moments of scale-free networks
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Moments of the power law pk = C ⋅ k -ɣ

q ⟨kn⟩ = ∫ kn pk dk
= C ⋅ (kmax

n-ɣ+1 - kmin
n-ɣ+1)/(n-ɣ+1)

= C kmin
n-ɣ+1 ⋅ (N n/(ɣ-1)-1 - 1) / (n-ɣ+1)

q They diverge with N if ɣ < n+1
e.g. variance (n=2) diverges for ɣ ∊ [2,3)
and the network does not have a scale

kmin

kmax



The scale-free regime
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large hubs 
radically 

shrink 
distances

hubs 
are not 

significantly 
large



Ultra-small-world, 2<ɣ<3
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q The average distance increases as ln(ln(N)), 
much slower than N or ln(N)

e.g. in www N=7⋅109, ln(N)=22.7, ln(ln(N))=3.12 (very small)

q The large hubs radically shrink the distance 
between nodes à ultra small world

distance of a node of 
degree ⟨k⟩ from a node of 

degree ktarget



Curiosity
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In many social experiments people avoided 
hubs for entirely perceptual reasons (e.g., 
they assumed they are busy, better use them 
only if really needed)

We live in a ultra-small-world, but we perceive 
that we are more distant from others than we 
really are!



Friendship paradox
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My friends are more popular than me! L
(Feld, 1991)

q Can be observed in the ultra-small-world
under the presence of big hubs

q Rationale: a node is very likely to be 
connected to a big hub, having a very large 
number of connections

q # of friends (in the average) = ⟨k⟩
q # of friends of friends ≃ N



Estimating the exponent
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Plotting power laws
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Better use a log-log scale

plateau = 
difficulty to 
estimate ɣ



Plotting power laws (cont’d)
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Even better: log-binning or complementary 
cumulative distr. function (CCDF) Pk ~ k -(ɣ-1)

Pk = ∑ pi

kmax

i=k



Pseudocode example

31



Estimating ɣ
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q pk = C k -ɣ

q C = (ɣ-1) kmin
ɣ-1

is determined by the
normalization condition

∫ pk dk = C ⋅ kmin
-(ɣ-1) / (ɣ-1) = 1

Fit ɣ only in a 
wisely chosen 
interval

kmin

∞

discard samples in 
the saturation region

choose an 
appropriate 
kmikmin



ML estimate for ɣ
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q Target PDF p(k|ɣ) = (ɣ-1)/kmin ⋅ (k/kmin)-ɣ

i

i i

i

i

q ML criterion (ki is the measured degree of node i)

maxɣ f(ɣ) = ∑ ln p(ki|ɣ) 

q f(ɣ) = ∑ ln((ɣ-1)/kmin) - ɣ ln(ki /kmin)

q Solve f’(ɣ) = ∑ 1/(ɣ-1) - ln(ki /kmin) = 0

q The result is
ɣ = 1 + ∑ 1 / ∑ ln(ki /kmin) 



Pseudocode example
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Other network models

35



Watts-Strogatz model [1998] 
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q It is the small-world model

ü Generalises the random network

ü It stresses the small-world property J

ü But predicts a Poisson like degree 
distribution L



Watts-Strogatz model (cont’d) 
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q Start from a regular lattice 
q Each node in the circle is connected to 2 

neighbours on the right, and 2 on the left 
q Rewire at random with probability p



Watts-Strogatz model (cont’d)
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probability p can be 
used to regulate the 
average path length



Molloy-Reed model [1995]
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1. assign a degree to each node 
make sure that the # of stubs is even, 2L

2. rewire stubs at random

q The resulting graph may contain cycles and 
multiple links (but are a few)

q L cannot control features other than pk



Molloy-Reed model [1995]
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q How to generate degrees with given 
distribution pk?

q Use the inverse CCDF method

draw a number    
0<r<1 at random

CCDF

Pk = ∑ pi
kmax

i=k

select k by inverse 
mapping using the 

CCDF



Generalizations

41

q Degree-preserving rewiring can help in 
reducing self/multiple-loops:

1. select two links (T1,S1) and (T2,S2)
2. rewire them as (T1,S2) and (T2,S1) = flip

q Can also be applied to directed networks by 
separately generating kin and kout stubs 



Chung-Lu model
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The hidden parameter model:
q activates a link with probability pij= kikj /⟨k⟩N

q prevents from having multi/self-loops
q L has very high complexity ∝ N2

q L cannot control features other than pk
q can be extended to directed networks by 

considering piàj = kioutkjin /L



Readings
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q A.L. Barabási, Network science
http://barabasi.com/networksciencebook

Ch.3 “Random networks”
Ch.4 “The scale-free property”

http://barabasi.com/networksciencebook

