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Why a network model?

Want to devise a model for generating a network
that looks like a real one

1 The model should capture meaningful network
parameters

1 The model should explain how networks
emerge

d The model can be used to test our algorithms:
many vs. few instances
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Random networks
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Random networks

It seems that many connections arising in real
networks are unpredictable

ldea:

 links are randomly generated, i.e., each link is
active with probability p

] random =i.i.d. distributed

This seems sensible as we often observe
unexpected links
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Erdos-Rényi model [1959/60]

. The random network is the simplest model:

pick a probability p, with O<p<1
activate each link (i,j) with probability p
J The number of links is variable

 There might be isolates
] Easy to calculate fundamental parameters
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Binomial distribution

Notation B(n,p)
Parameters n < {0,1,2,...} — number of trials q
p € [0, 1] - success probability for
each trial X
g=1-p
Support k€ {0,1,...,n} —number of S
successes
PMF 7\ & ook -
(k)ﬁ binomial coefficient n!/k!(n-k)! .
CDF I,(n—k,1+k) S |
Mean np =
Median |np| or [np] '
Mode [(n+ )plor[(n+1)p] —1
Variance npq
Skewness q—p
Nz
Ex. kurtosis |1 — 6pq
npq
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Probability mass function
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p~0.7 and n=20
* =05 and =40

10 X 0 40

P(k;n,p) = probability that k out of
n trials are positive, where each is
positive with probability p



Degree distribution

. The number of neighbours is binomially
distributed

P(k;n,p) = probability that a node has exactly k
neighbours, with number of
possible neighbours n = N-1

1 Average # of neighbours this defines p
(k) =(N-1)p > | p=(k)/(N-1)

p is usually very small (since (k) << N)

0’ = (N-1)p(1-p) = (k}

tight around the mean
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Poisson approximation

J Poisson distribution (easier to use)
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1 Very good approximation of binomial for small
p (and at small k)
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Are real networks Poisson?

100 | ] 100 * ] 100 E E
INTERNET I SCIENCE 0 PROTEIN 1
¢ o - COLLABORATION - - INTERACTIONS -
10" = % - o L ®
.. - 107 & .. -
p .O 10" ] —
k % : °
102 + 5 P N\ ’ i
® - P, L LR
I _ 107 - ‘) ] I oo
L . .
108 © - & 102 = o E
L - - T E \ 4
1038 © - I o
104 © : = r il - @ e o
L _ )
L 1073 — _
® . P : ¢ 3
105 - - ee _ 10 - o®e - ® ®oene o
(k) OGNS - - (k) 0 T 3 k)
10’6 I 1 ||||\|lf|| ol Lol ] 10_5 | 1 |||||J<| bl Ll ] 10‘4 1 \ll/ ool
10° 10" 102 103 10° 10" 102 103 10° 10! 10?
k k k

No! Poisson networks are deprived of hubs
... but, nevertheless, Poisson networks capture some aspects
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Small world

. In real networks distance between two
randomly chosen nodes is generally short

J Milgram [1967]: 6 degrees of separation

J What does this mean? : ®
We are more connected than we think
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Distances in random graphs

1 we reach (k) nodes in one hop, (k)? in two, {k)?
in three, etc.

J an estimate of the average distance (d) is found
by solving for N = (k){? to have

(d) = In(N)/In((k))

 (d) is often taken as an estimate of the network
diameter d, .,

e.g.: on earth we are N=7-10° individuals,

with (k)=1000 acquaintances each = {d) = 3.28
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Fit in real networks

NETWORK

Internet

WWW

Mobile Phone Calls

Actor Network

Citation Network

Protein Interactions

N

192,244
325,729

36,595

702,388
449,673

2,018

L

609,066
1,497,134

91,826

29,397,908

4,707,958

2,930

(k)

6.34
4.60

2.51

83,71
10.43

2.90

(d)

6.98
11.27

11.72

3,91
11,21

5.61

26
93

39

14

42

14

InN
In{k)

658 vV
8.31 v

M.42

3,04
5.55

7.4

Very good fit | Correct at least as order of magnitude
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What about structured networks?

| 1D LATTICE

(d)~N i2:§:§:$: 2D LATTICE

oo 1338 (dy~N2
opooo°o¢°¢1 ¢ 3D LATTICE

<d> E ggo <d>~N1/3
o2y RANDOM

i NETWORK

= (dy~InN

No fit |
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Are real networks random?

d Random networks are generally NOT a good
model for real world scenarios, but

v’ Are easy to describe and generate
v Can make some correct predictions

v Can serve as a general reference model
(in the sense that a model is good if it
deviates from the random model as much as
real networks do)
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Scale-free networks
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Scale free networks

The degree distribution of the www (Albert et al., 1999)
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they follow a power-law

In(py) =c-y - In(k) >
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Poisson versus power-law
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Power-law is heavy tailed (presence of hubs) -
like Weibull, lognormal, Lévy
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The value of y in real networks

NETWORK N L (k) Vin Y out Y
Internet 192,244 609,066 6.34 - - 3.42*
WWW 325,729 1,497,134 4.60 2.00 2.31

Mobile Phone Calls 36,595 91,826 2.51 4.69* 5.01*

Actor Network 702,388 29,397,908 83.71 - - 2.12*
Citation Network 449,673 4,689,479 10.43 3.03** 4.00*

Protein Interactions 2,018 2,930 290 - - 2.89*

y € [2,4] , but the statistical fit is not always
good (** = good fit with an exponential)
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Is everything scale-free?

Not all networks are scale- CFO) i, £
free, e.g.: 7" |
J Networks appearing in

material science, where all
nodes have the same

X

MR 2
e EGHEsS

degree

 The neural network ofthe .,
C.elegans worm 1o,

O The power grid, consisting .| .
of generators and switches
connected by power lines " T

M ME. 10-50 5 10 15 20 19

K -- node degree



Scale-free networks

1 A scale free network is a network whose degree
distribution follows a power law p,=C- k¥

It is meaningful in an interval [K.in,Kmas]

. The parameter y (slope) is called the exponent

1 Cis determined by the total normalization
condition Z/I:ZX py = 1 which we approximate to

{ Zk dk=C- k. W1/ (y-1)=1

MiIiME.
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The largest hub

The size of the largest hub is captured by
fk pedk =C- ko W/ (y-1) = 1/N

kmax= kmin N y-1)

MiIiME.
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Hubs are large in scale-free networks

1010 L
107 L SCALE-FREE
108 ¢ (N-1) k ~No
107 L
max _
10° &
104 RANDOM NETWORK
109 F k _~InN
102 s max
10" &
100 L I ! I | I | I ! I
102 104 100 N 10° 10° 107

The highest degree increases in N polynomially
(sub-linearly) fast = big hubs
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Moments of scale-free networks

Moments of the power law p,=C- k¥

kmax
Q (k) =], ™ k" py dk
= C ) (kmaxn-wl B kminn-wl)/(n'Y'I'l)
=Ck_. my+l. (N n/ly-1-1 - 1)/ (n-y+1)

min

. They diverge with N if y < n+1
e.g. variance (n=2) diverges for y € [2,3)
and the network does not have a scale
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The scale-free regime

ANOMALOUS SCALE-FREE
REGIME REGIME
No large network Indistinguishable
can exist here from a random network
Q S
S &8 O
Qv & P S
R R E¥
1 2 3 Y
(k)  DIVERGES (k) FiniTe
y=3
<k2> DIVERGES y=2 <k2> DIVERGES
k., ~N (d) ~ InN
e InlnN
CRITICAL
POINT
large hubs (d)~ InlnN hubs
radically
shrink are not
kmax GROWS FASTER THAN N distances ULT\,I;{//_O\;QSLI\SALL significa ntly
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Ultra-small-world, 2<y<3

1 The average distance increases as In(In(N)),
much slower than N or In(N)

e.g. in www N=7-10°, In(N)=22.7, In(In(N))=3.12 (very small)

127

RANDOM NETWORK

8 L
distance of a node of «d,__»

degree (k) from a node of 6\
4 \

degree Keyges SCALE-FREE

2 |
V 1 ) 1 4 I t 1 1 1 i
0 10 20 30 40 50 60 70 80 90100

target

. The large hubs radically shrink the distance

between nodes = ultra small world
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In many social experiments people avoided
hubs for entirely perceptual reasons (e.g.,
they assumed they are busy, better use them

only if really needed)

We live in a ultra-small-world, but we perceive
that we are more distant from others than we

really are!
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Friendship paradox

My friends are more popular than me! ®
(Feld, 1991)

1 Can be observed in the ultra-small-world
under the presence of big hubs

1 Rationale: a node is very likely to be
connected to a big hub, having a very large
number of connections

] # of friends (in the average) = (k)
1 # of friends of friends = N
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Estimating the exponent
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Plotting power laws
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Better use a log-log scale
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Plotting power laws (cont’d)

LOG-BINNING CUMULATIVE
100 -~ ! I'..'.'IIIII I IIIIIIII I IIIIIIII 1 ||||III_ 100 : bl.l.llll;l‘...l ||I|II|| I e I IIIIIII_
107 F e ) - - \ @
- 1107 1
102 = ] |
107 ;_ ...'s 1 1072 - 3
p, - ]
1('3('4 5 ~ 7 P,
1075 [ .’u. ; 1073 F 1
10 = " ] 1074 — i=k .."t.. E
107 ¢ R .
10-8 ] 1 |||||||I I IIIIIIII 1 l||||||| 1 I.I‘.I.ﬂ_lll- 10-5 I 1 |||||||I 1 |||||||| 1 IIIIIIII 1 L I N
10° 10° 102 k 10 10% 10° 10’ 10° k 10° 104

Even better: log-binning or complementary

cumulative distr. function (CCDF) P, ~ k “¥-1)
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Pseudocode example

G

np. loadtxt('Wiki-Vote.txt').astype(int)

Degree Distribution

# adjacency matrix 0] ®
N = np.max(G)
A = csr_matrix((np.ones(len(G)), (G[:, 11, G[:, 2]))) «.

Q

103

#distribution

which_deg = 0 # O=out degree, 1=in degree

d = np.sum(A, which_deg) # out degree for each node i
d = np.squeeze(np.asarray(d)) # from matrix to array

d = d[d>0] # avoid zero degree

k = np.unique(d) # degree samples

pk = np.histogram(d, k)[@] # occurrence of each degree

pk = pk/np.sum(pk) # normalize to 1

Pk = 1 - np.cumsum(pk) # complementary cumulative

fig = plt.figure()

plt.loglog(pk, 'o0")

plt.title("Degree Distribution", size = 20)
plt.xlabel("k", size = 18)
plt.ylabel("p_k", size = 18)

plt.show()
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Estimating ¥

Fityonlyina
wisely chosen
interval

D pk = Ck-y
dC= (Y'l) kminy_l

is determined by the
normalization condition

discard samples in

the saturation region

choose an :
appropriate :
Koyin =49

fk;k dk=C- k. w1/ (y-1)
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ML estimate for y

- Target PDF p(k|y) = (y-1)/knin = (K/Krnin) ™

_J ML criterion (k. is the measured degree of node i)
max, fly) = 2 In p(k;|y)

d fly) = Z,ln((Y'l)/kmin) -y In(k; /K i)

0 solve f(y) = 5,1/(y-1) - In(k /kryn) = O

 The result is

y=1+3 1/ In(Kk;/Ke)
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Pseudocode example

4\ MATLAB

which_deg = 1; % 1 = out degree, 2 = in degree
d = full(sum(A,which_deg));
d2 = d(d>=kmin); % restrict range

ga = 1+1/mean(log(d2/kmin)); % estimate the exponent

MIiME.
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Other network models
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Watts-Strogatz model [1998]

J It is the small-world model
v" Generalises the random network
v' It stresses the small-world property ©

v' But predicts a Poisson like degree
distribution ®
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Watts-Strogatz model (cont’d)

REGULAR SMALL-WORLD  RANDOM

Increasing randomness

] Start from a regular lattice

1 Each node in the circle is connected to 2
neighbours on the right, and 2 on the left

1 Rewire at random with probability p
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Watts-Strogatz model (cont’d)

1 C

0.8

0.6

0.4

0.2 L

MIiME.

o L. .
0.0001

dlp) /d (0]

probability p can be
used to regulate the
average path length
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Molloy-Reed model [1995]

k=3 k=2 k=2 k=1
1. assign a degree to each node
g 8 o000

make sure that the # of stubs is even, 2L

2. rewire stubs at random

. The resulting graph may contain cycles and
multiple links (but are a few)

1 ® cannot control features other than p,
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Molloy-Reed model [1995]

] How to generate degrees with given
distribution p,?

] Use the inverse CCDF method

1 kmax
Pv=2p;
CCDF i=k
draw a number 0.5 -

O<r<1 at random :
select k by inverse

mapping using the
CCDF

1 10 k 100
MiME k



Generalizations

. Degree-preserving rewiring can help in
reducing self/multiple-loops:

1. select two links (T,,S,) and (T,,S,)
2. rewire them as (T,,S,) and (T,,S,) = flip
® @
o O @ @s

o O o O

1 Can also be applied to directed networks by
separately generating k., and k_, stubs
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Chung-Lu model

The hidden parameter model:
 activates a link with probability p;= kk; /(k)N

. prevents from having multi/self-loops
1 ® has very high complexity &< N?
1 ® cannot control features other than p,

. can be extended to directed networks by
considering p;.; = k°uk" /L
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. A.L. Barabasi, Network science

http://barabasi.com/networksciencebook

Ch.3 “Random networks”
Ch.4 “The scale-free property”
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