Network Science

#3 Scale-free networks

© 2020 T. Erseghe

Why a network model?

Want to devise a model for generating a network that looks like a real one

- The model should capture meaningful network parameters
- The model should explain how networks emerge

The model can be used to test our algorithms: many vs. few instances

Random networks

It seems that many connections arising in real networks are unpredictable

Idea:

- links are randomly generated, i.e., each link is active with probability p
- **random** = i.i.d. distributed

This seems sensible as we often observe unexpected links

Erdös-Rényi model [1959/60]

□ The random network is the simplest model:

- pick a probability *p*, with 0<*p*<1
- activate each link (*i*, *j*) with probability p
- The number of links is variable
- □ There might be isolates
- Easy to calculate fundamental parameters

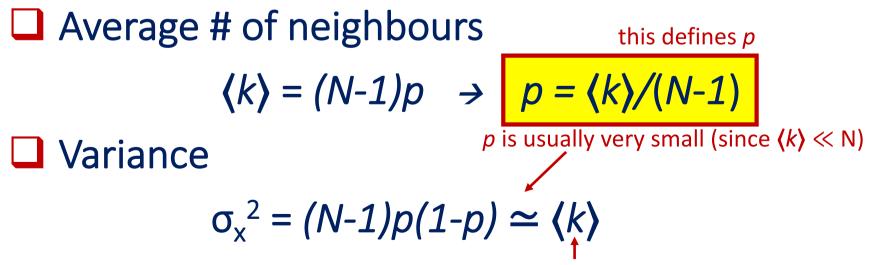
Binomial distribution

Notation	B(n,p)	Probability mass function					
Parameters	$n \in \{0,1,2,\ldots\}$ – number of trials $p \in [0,1]$ – success probability for each trial $q=1-p$		020		 p=0.5 and n=20 p=0.7 and n=20 p=0.5 and n=40 		
Support	$k \in \{0,1,\ldots,n\}$ – number of successes		0.15	and the second			
PMF	$\binom{n}{k} p^{k} q^{n-k}$ binomial coefficient n!/k!	n-k)!	9 010				
CDF	$I_q(n-k,1+k)$		8]	1.1.1	· •		
Mean	np		8-L		· · · · · · · · · · · · · · · · · · ·		
Median	$\lfloor np \rfloor$ or $\lceil np \rceil$		۰ <u>_</u>) 10 20	30 40	5	
Mode	$\lfloor (n+1)p floor$ or $\lceil (n+1)p ceil -1$			$P(k \cdot n \cdot n) = nr$	obability that <mark>k</mark> ou	t of	
Variance	npq				ositive, where eac		
Skewness	$rac{q-p}{\sqrt{npq}}$			•	tive with probabilit		
Ex. kurtosis	1-6pq						
	npq						

Degree distribution

The number of neighbours is binomially distributed

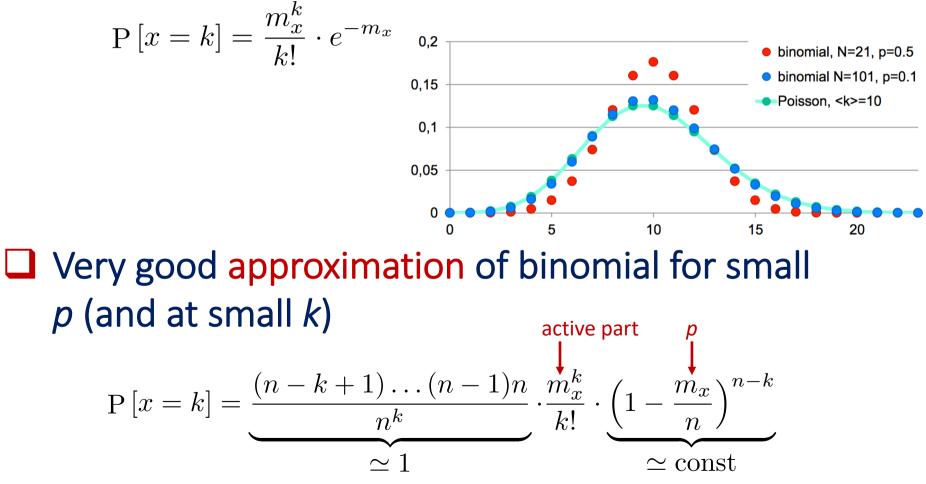
P(k;n,p) = probability that a node has exactly k neighbours, with number of possible neighbours <math>n = N-1



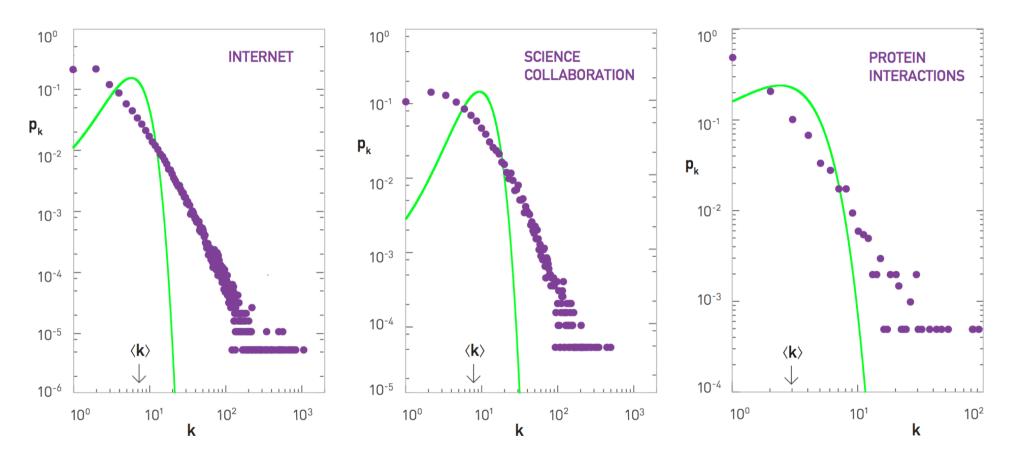
tight around the mean

Poisson approximation

Poisson distribution (easier to use)



Are real networks Poisson?



No! Poisson networks are deprived of hubs ... but, nevertheless, Poisson networks capture some aspects MIME.

Small world

In real networks distance between two randomly chosen nodes is generally short

□ Milgram [1967]: 6 degrees of separation

What does this mean? We are more connected than we think

MIME.

Ralph

Jane

Peter

Sarah

Distances in random graphs

- we reach $\langle k \rangle$ nodes in one hop, $\langle k \rangle^2$ in two, $\langle k \rangle^3$ in three, etc.
- an estimate of the average distance $\langle d \rangle$ is found by solving for $N = \langle k \rangle^{\langle d \rangle}$ to have

 $\langle d \rangle = \ln(N) / \ln(\langle k \rangle)$

 \Box (*d*) is often taken as an estimate of the network diameter d_{max}

<u>e.g.</u>: on earth we are $N=7\cdot 10^9$ individuals, with $\langle k \rangle = 1000$ acquaintances each $\rightarrow \langle d \rangle = 3.28$ MIME.

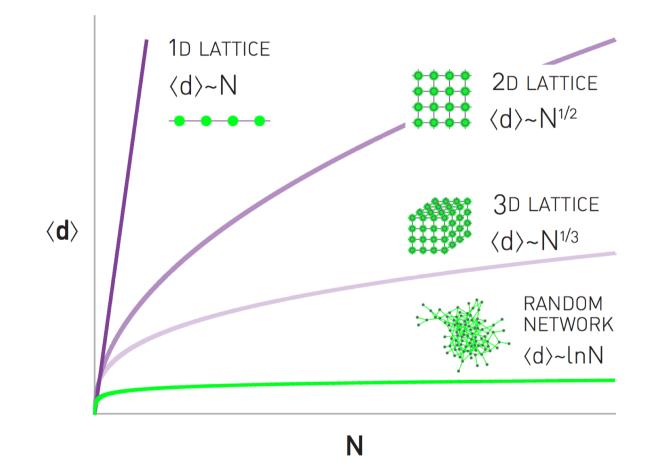
Fit in real networks

		_				lnN	
NETWORK	N	L	$\langle k \rangle$	$\langle d \rangle$	$d_{_{max}}$	$\ln\langle k\rangle$	
Internet	192,244	609,066	6.34	6.98	26	6.58 🗸	
WWW	325,729	1,497,134	4.60	11.27	93	8.31 🗸	
Power Grid	4,941	6,594	2.67	18.99	46	8.66	
Mobile Phone Calls	36,595	91,826	1,826 2.51 11.72 3		39	11.42 🗸	
Email	57,194	103,731	1.81	5.88	18	18.4	
Science Collaboration	23,133	93,439	8.08	5.35	15	4.81 🗸	
Actor Network	702,388	29,397,908	83,71	3,91	14	3,04 🗸	
Citation Network	449,673	4,707,958	10.43	11,21	42	5.55	
E. Coli Metabolism	1,039	5,802	5.58	2.98	8	4.04	
Protein Interactions	2,018	2,930	2.90	5.61	14	7.14 🗸	

Very good fit ! Correct at least as order of magnitude

MIME.

What about structured networks?



No fit !

Are real networks random?

- Random networks are generally NOT a good model for real world scenarios, but
 - ✓ Are easy to describe and generate
 - Can make some correct predictions
 - Can serve as a general reference model (in the sense that a model is good if it deviates from the random model as much as real networks do)

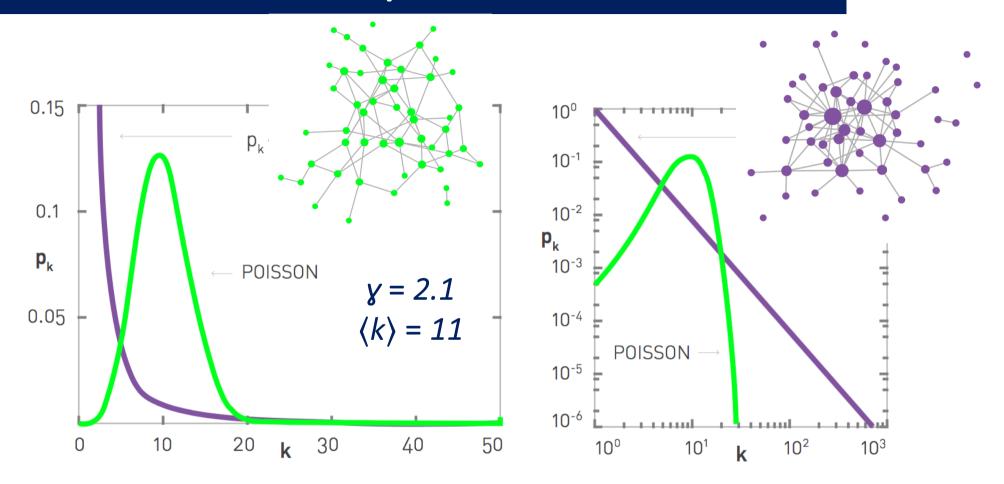
Scale-free networks

Scale free networks

10⁰ 10⁰ y is the slope 10⁻² 10-2 $\mathbf{p}_{\mathbf{k}_{\mathsf{out}}}$ $\mathbf{p}_{\mathbf{k}_{in}}$ 10-4 10-4 **γ**in =2.1 $\gamma_{out} = 2.3$ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 10⁻¹⁰ 10-10 10⁰ 10² 10³ 104 105 10⁰ 10¹ 10² 10³ 104 **10**⁵ 10¹ $\mathbf{k}_{\mathsf{out}}$ k_{in} they follow a power-law $p_k = C \cdot k^{-\gamma}$ $\ln(p_k) = c - \gamma \cdot \ln(k)$ \rightarrow MIME.

The degree distribution of the www (Albert et al., 1999)

Poisson versus power-law



Power-law is heavy tailed (presence of hubs) like Weibull, lognormal, Lévy

The value of y in real networks

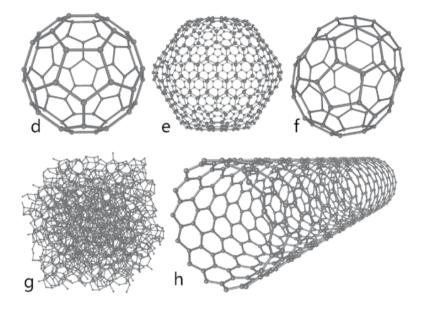
NETWORK	N	L	$\langle k \rangle$	γ_{in}	γ_{out}	γ
Internet	192,244	609,066	6.34	-	-	3.42*
WWW	325,729	1,497,134	4.60	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	Exp.
Mobile Phone Calls	36,595	91,826	2.51	4.69*	5.01*	-
Email	57,194	103,731	1.81	3.43*	2.03*	-
Science Collaboration	23,133	93,439	8.08	-	-	3.35*
Actor Network	702,388	29,397,908	83.71	_	-	2.12*
Citation Network	449,673	4,689,479	10.43	3.03**	4.00*	-
E. Coli Metabolism	1,039	5,802	5.58	2.43*	2.9 0*	-
Protein Interactions	2,018	2,930	2.90	-	-	2.89*

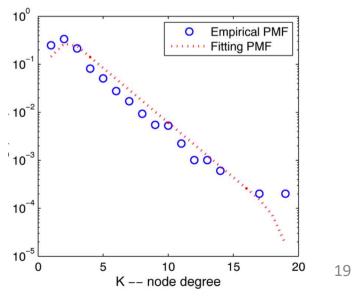
g ∈ [2,4], but the statistical fit is not always
good (** = good fit with an exponential)
MIME

Is everything scale-free?

Not all networks are scalefree, e.g.:

- Networks appearing in material science, where all nodes have the same degree
- The neural network of the C.elegans worm
- The power grid, consisting of generators and switches connected by power lines





Scale-free networks

- A scale free network is a network whose degree distribution follows a power law $p_k = C \cdot k^{-\gamma}$
- It is meaningful in an interval [k_{min}, k_{max}]
- □ The parameter γ (slope) is called the exponent
- C is determined by the total normalization condition $\sum_{k=k_{\min}}^{k_{\max}} p_k = 1$ which we approximate to

$$\int_{k_{\min}}^{\infty} dk = C \cdot k_{\min}^{-(\gamma-1)} / (\gamma-1) = 1$$

The largest hub

The size of the largest hub is captured by $\int_{k_{\text{max}}}^{\infty} p_k \, dk = C \cdot k_{\text{max}} (y-1) = 1/N$

$$k_{\max} = k_{\min} N^{1/(\gamma-1)}$$
 is the natural cutoff

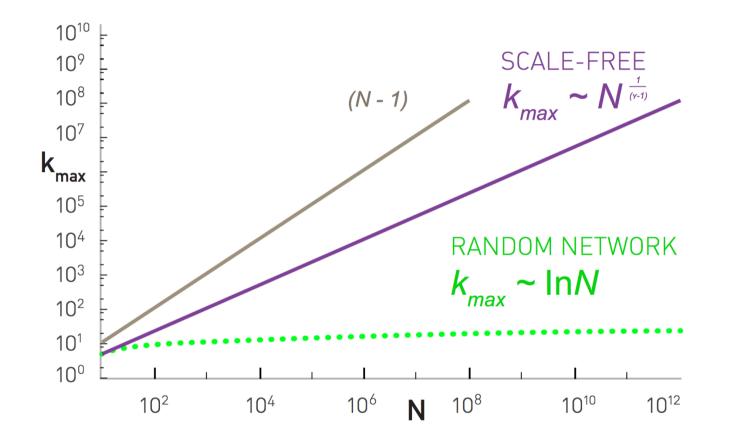
MIME.

<k>

0

*k*_{max}

Hubs are large in scale-free networks



The highest degree increases in N polynomially (sub-linearly) fast = big hubs

Moments of scale-free networks

Moments of the power law $p_k = C \cdot k^{-\gamma}$

$$(k^n) = \int_{k_{\min}}^{k_{\max}} k^n p_k dk$$

$$= C \cdot (k_{\max} {}^{n-y+1} - k_{\min} {}^{n-y+1})/(n-y+1)$$

$$= C k_{\min} {}^{n-y+1} \cdot (N {}^{n/(y-1)-1} - 1) / (n-y+1)$$

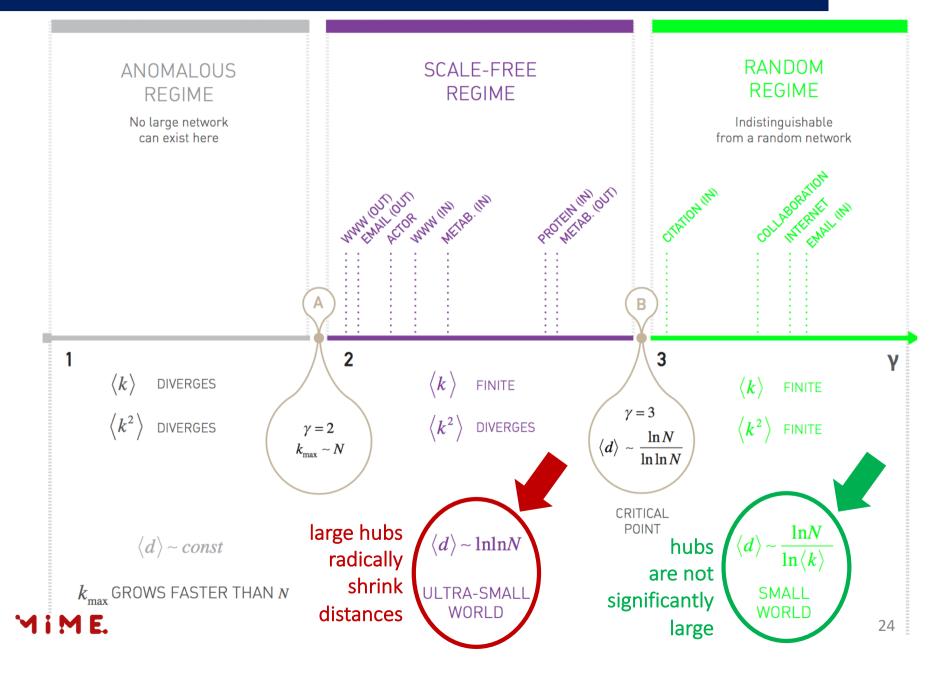
$$They diverge with N if y < n+1$$

$$e.g. variance (n=2) diverges for y \in [2,3)$$

$$and the network does not have a scale$$

p_k

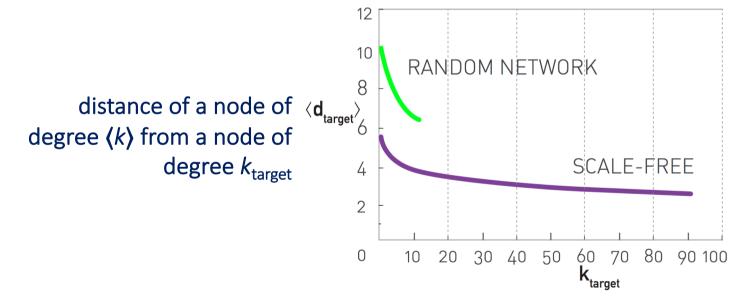
The scale-free regime



Ultra-small-world, 2<y<3

The average distance increases as ln(ln(N)), much slower than N or ln(N)

e.g. in www *N*=7·10⁹, ln(*N*)=22.7, ln(ln(*N*))=3.12 (very small)



□ The large hubs radically shrink the distance between nodes → ultra small world
MIME.

Curiosity

In many social experiments people avoided hubs for entirely perceptual reasons (e.g., they assumed they are busy, better use them only if really needed)

We live in a ultra-small-world, but we perceive that we are more distant from others than we really are!

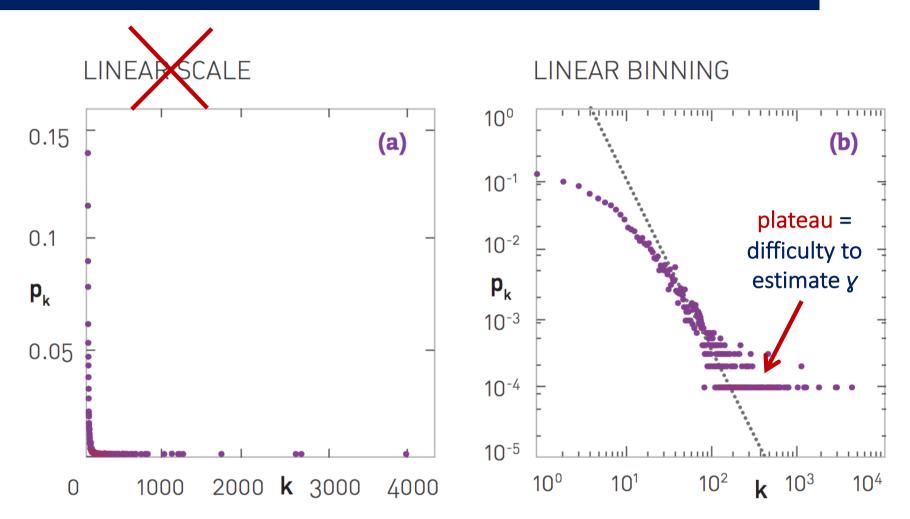
Friendship paradox

My friends are more popular than me! 🛞 (Feld, 1991)

- Can be observed in the ultra-small-world under the presence of big hubs
- Rationale: a node is very likely to be connected to a big hub, having a very large number of connections
- \Box # of friends (in the average) = $\langle k \rangle$
- \square # of friends of friends $\simeq N$

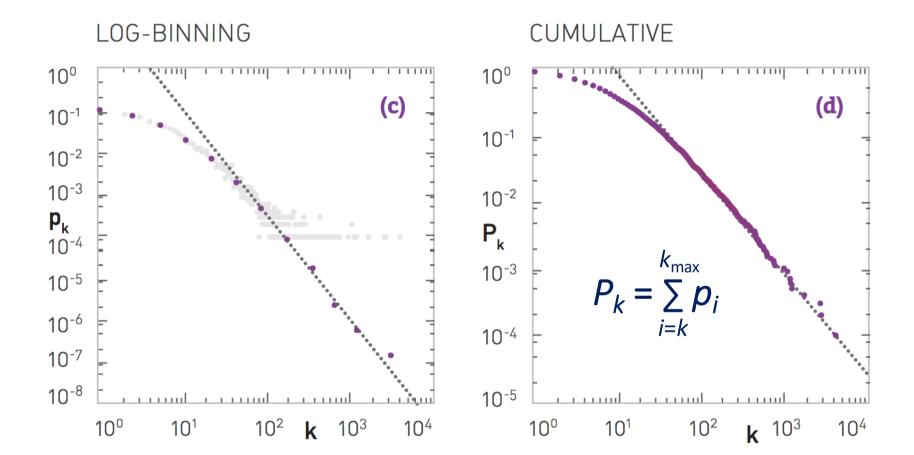
Estimating the exponent

Plotting power laws



Better use a log-log scale

Plotting power laws (cont'd)

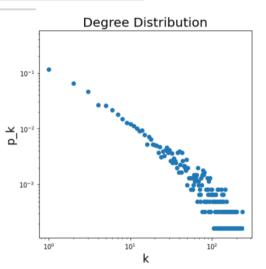


Even better: log-binning or complementary cumulative distr. function (CCDF) $P_k \sim k^{-(\gamma-1)}$ MIME.

Pseudocode example

```
G = np.loadtxt('Wiki-Vote.txt').astype(int)
# adjacency matrix
N = np.max(G)
A = csr_matrix((np.ones(len(G)), (G[:, 1], G[:, 0])))
#distribution
which_deg = 0 # 0=out degree, 1=in degree
d = np.sum(A, which_deg) # out degree for each node
d = np.sum(A, which_deg) # out degree for each node
d = np.squeeze(np.asarray(d)) # from matrix to array
d = d[d>0] # avoid zero degree
k = np.unique(d) # degree samples
pk = np.histogram(d, k)[0] # occurrence of each degree
pk = pk/np.sum(pk) # normalize to 1
Pk = 1 - np.cumsum(pk) # complementary cumulative
```

```
fig = plt.figure()
plt.loglog(pk, 'o')
plt.title("Degree Distribution", size = 20)
plt.xlabel("k", size = 18)
plt.ylabel("p_k", size = 18)
plt.show()
```



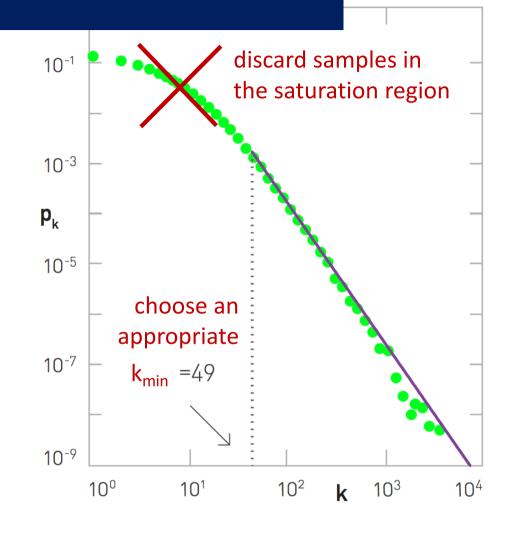
Estimating y

Fit y only in a wisely chosen interval

$$\square p_k = C k^{-\gamma}$$
$$\square C = (\gamma - 1) k_{\min}^{\gamma - 1}$$

is determined by the normalization condition

$$\int_{k_{\min}}^{\infty} p_k \, dk = C \cdot k_{\min}^{-(\gamma-1)} / (\gamma-1) = 1$$



ML estimate for y

$$\Box \text{ Target PDF } p(k|y) = (y-1)/k_{\min} \cdot (k/k_{\min})^{-y}$$

ML criterion (*k_i* is the measured degree of node *i*)

 $\max_{y} f(y) = \sum_{i} \ln p(k_{i} | y)$ $f(y) = \sum_{i} \ln((y-1)/k_{\min}) - y \ln(k_{i}/k_{\min})$ $Solve f'(y) = \sum_{i} 1/(y-1) - \ln(k_{i}/k_{\min}) = 0$ The result is

$$\boldsymbol{\gamma} = \boldsymbol{1} + \sum_{i} \boldsymbol{1} / \sum_{i} \ln(k_i / k_{\min})$$

Pseudocode example

which_deg = 1; % 1 = out degree, 2 = in degree
d = full(sum(A,which_deg));
d2 = d(d>=kmin); % restrict range
ga = 1+1/mean(log(d2/kmin)); % estimate the exponent

Other network models

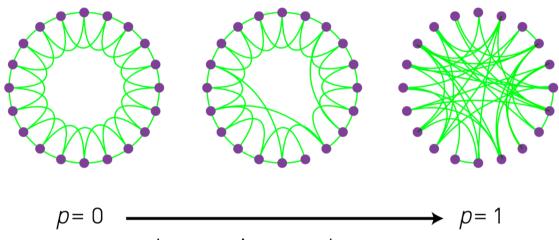
Watts-Strogatz model [1998]

□ It is the small-world model

- Generalises the random network
- ✓ It stresses the small-world property ☺
- ✓ But predicts a Poisson like degree distribution ⊗

Watts-Strogatz model (cont'd)

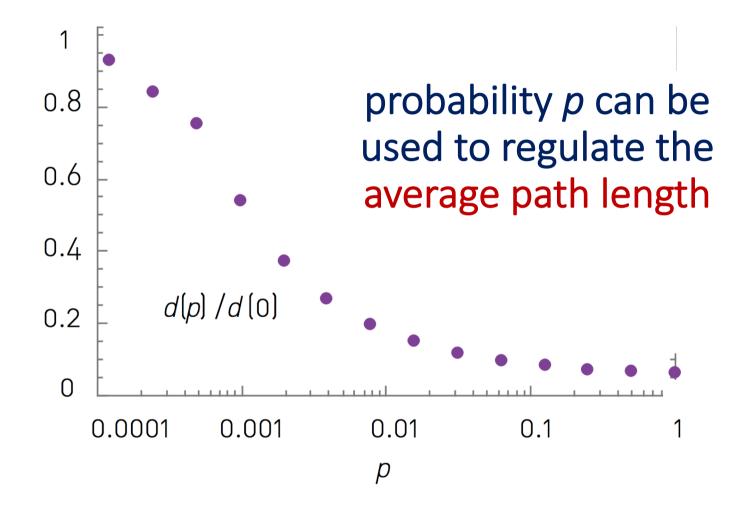
REGULAR SMALL-WORLD RANDOM



Increasing randomness

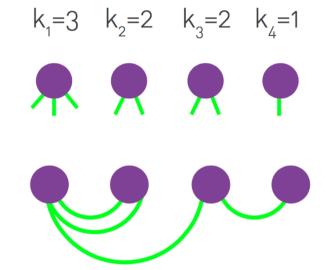
- Start from a regular lattice
- Each node in the circle is connected to 2 neighbours on the right, and 2 on the left
- Rewire at random with probability p

Watts-Strogatz model (cont'd)



Molloy-Reed model [1995]

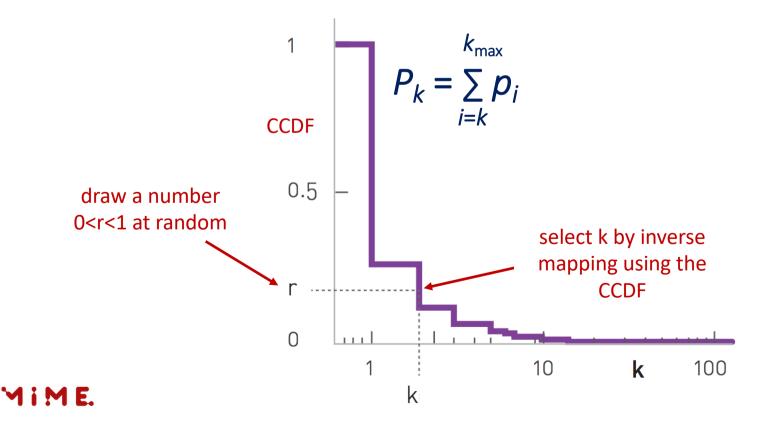
- 1. assign a degree to each node make sure that the # of stubs is even, 2L
- 2. rewire stubs at random



- The resulting graph may contain cycles and multiple links (but are a few)
- $\square \otimes$ cannot control features other than p_k

Molloy-Reed model [1995]

- How to generate degrees with given distribution p_k ?
- Use the inverse CCDF method



Generalizations

Degree-preserving rewiring can help in reducing self/multiple-loops:

1. select two links (T_1,S_1) and (T_2,S_2)

2. rewire them as (T_1, S_2) and $(T_2, S_1) = flip$

Can also be applied to directed networks by separately generating k_{in} and k_{out} stubs

Chung-Lu model

The hidden parameter model:

 \Box activates a link with probability $p_{ij} = k_i k_j / \langle k \rangle N$

- prevents from having multi/self-loops
- \square \otimes has very high complexity $\propto N^2$
- \square \otimes cannot control features other than p_k
- □ can be extended to directed networks by considering $p_{i \rightarrow j} = k_i^{\text{out}} k_j^{\text{in}} / L$

MIME

3

A.L. Barabási, Network science

http://barabasi.com/networksciencebook

- Ch.3 "Random networks"
- Ch.4 "The scale-free property"

