# Network Science 

\#2 Graphs
© 2020 T. Erseghe

## Euler \& the 7 bridges of Königsberg (1736)



How to walk through the city by crossing each bridge only once?

## Networks as graphs



Graph $\mathcal{G}(\mathcal{V}, \boldsymbol{\mathcal { E }})$
$\square$ Vertices (set $\mathcal{V}$ ) : nodes, users, elements
$\square$ Edges (set $\mathcal{E}$ ): links, arcs, hops, connections

## Modelling aspects

$\square$ "Network, nodes, links" = technology
$\square$ "Graph, vertices, edges" = mathematics
$\square$ Design choices for what nodes and links are
$\square$ graph structure can be a given
$\square$ or it can be the focus of the model itself

## Directed versus undirected

$\square$ A connection relationship can have a privileged direction or can be mutual
$\square$ Either a directed or an undirected link

$\square$ If the network has only (un)directed links, it is also called itself (un)directed network
$\square$ Certain networks can have both types

## Some examples

| network | nodes and links | type |
| :---: | :---: | :---: |
| the Internet | Hosts and connections | undirected |
| the web | Webpages and links | directed |
| electrical grid | Power stations and cables | undirected |
| social network | Users and friendship | undirected |
| citation <br> network | Papers and references | directed |
| movie network | Actors and co-starring | undirected |
| metabolism | Compounds and reactions | directed |
| protein network | Proteins and bindings | undirected |
| genealogy | People and parenthood | directed |

## Directed versus undirected

$\square$ At first glance undirected $\rightarrow$ directed by duplicating links, but not necessarily quite the same though


## Generality of representation



## Useful terms

- Path
a sequence of interconnected nodes (meaning each pair of nodes adjacent in the sequence are connected by a link)

$\square$ Path length
\# of links involved in the path (if the path involves $n$ nodes then the path link is $n-1$ )
$\square$ Shortest path (between any two nodes) the path with the minimum length, which is called the distance
$\square \quad$ Diameter (of the network) the highest distance in the network


## Useful terms

$\square$ Algorithms
available to compute distances: Dijkstra, Bellman-Ford, BFS
$\square$ Average path length
average distance between all nodes pairs (apply an algorithm to all node couples, and take the average)
$\square$ Cycle
path where starting and ending nodes coincide


## Multi-graphs

$\square$ Multi-graphs (or pseudo-graphs)
Some network representations require multiple links (e.g., number of citations from one author to another)


## Weighted graph

Weighted graph
Sometimes a weight $w_{i j}$ is associated to a link $(i, j) \in \mathcal{E}, ~ e . g .$, to underline that the links are not identical (strong/weak relationships)

Can be seen as a generalization of multi-graphs (weight = \# of links)


## Self-interactions

In many networks nodes do not interact with themselves
if $j \in \mathcal{V}$ then $(\mathrm{j}, \mathrm{j}) \notin \boldsymbol{\mathcal { E }}$
$\square$ To account for self-interactions, we add loops to represent them


## Adjacency matrix

$\square$ An adjacency matrix $A=\left[a_{i j}\right]$ associated to $\operatorname{graph} \boldsymbol{\mathcal { G }}(\boldsymbol{\mathcal { V }}, \boldsymbol{\mathcal { E }})$ has
entries $a_{i j}=0$ for $(i, j) \notin \mathcal{E}$ (not a connection)
if nodes $i$ and $j$ are connected then $a_{i j} \neq 0$ in plain graphs $a_{i j}=1$ for $(i, j) \in \mathcal{E}$


$$
\boldsymbol{A}=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & 0 & 1.5 & 0.2 \\
0 & 1.5 & 0 & 2.3 \\
0 & 0.2 & 2.3 & 0
\end{array}\right]
$$

## Symmetries

$\square$ Undirected graph = symmetric matrix


$$
\boldsymbol{A}=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & -0 & 1.5 & 0.2 \\
0 & 1.5 & 0 & 2.3 \\
0 & 0.2 & 2.3 & \ddots
\end{array}\right]
$$

$\square$ Directed graph $=$ asymmetric matrix

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & 0 & 1.5 & 0 \\
0 & 1.5 & 0 & 0 \\
0 & 0.2 & 2.3 & 0
\end{array}\right]
$$

## Convention

$\square$ The weight $a_{i j}$ is associated to $i$ th row
$j$ th column
directed edge $j \rightarrow i$ starting from node $j$ and leading to node $i$


$$
\boldsymbol{A}=\left[\begin{array}{cccc}
0.3 & 1 & 0 & 0 \\
1 & \ddots & 0 & 1.5 \\
0 & 0 & 0 \\
0 & 1.5 & 0 & 0 \\
0 & 0.2 & 0.3 & 0 \\
0 & (2.3 & a_{34} & a_{4} . .
\end{array}\right]
$$

## Degree

$\square$ The degree $k_{i}$ of node $i$ in an undirected networks is
the \# of links $i$ has to other nodes, or the \# of nodes $i$ is linked to

$\square$ The \# of nodes is $N=|\mathcal{V}|$
$\square$ The \# of edges is $L=|\mathcal{E}|=1 / 2 \sum_{i} k_{i}$
$\square$ The average degree is $\langle k\rangle=\sum_{i} k_{i} / N=2 L / N$

## Degree

$\square$ For directed networks we distinguish between
in-degree $k_{i}^{\text {in }}=\#$ of entering links out-degree $k_{i}^{\text {out }}=\#$ of exiting links total degree $k_{i}=k_{i}^{\text {in }}+k_{i}^{\text {out }}$

(undirected: $k_{i}^{\text {in }}=k_{i}^{\text {out }}$ due to the symmetry)
$\square$ The \# of links is $L=\sum_{i} k_{i}^{\text {in }}=\sum_{i} k_{i}^{\text {out }}$ (no need for factor $1 / 2$ )
The average \# of links is <k> = L/N

## Adjacency matrix \& degree

$\square$ The in (out) degree can be obtained by summing the adjacency matrix over rows (columns)

$\square$ A few useful linear algebra expressions

$$
k^{\text {in }}=A \cdot 1 \quad k^{\text {out }}=A^{\top} \cdot \mathbf{1}=\left(1^{\top} \cdot A\right)^{\top}
$$

## Real networks are sparse

The adjacency matrix is typically sparse good for tractability !

protein
interaction
network

## Real networks are sparse

$\square$ Complete graphs: the maximum \# of links out of N nodes is

$$
\begin{gathered}
L_{\max }=1 / 2 N(N-1) \text { undirected } \\
N(N-1) \text { directed }
\end{gathered}
$$

$\square$ The maximum average degree is $<k\rangle_{\max }=N-1=2 L_{L_{\max }} / N$ directed
$\square$ In real networks $L \ll L_{\max }$ and $<k>\ll N-1$

| network | type | N | L | <k> |
| :--- | :---: | :---: | :---: | :---: |
| www | directed | $3.2 \times 10^{5}$ | $1.5 \times 10^{6}$ | 4.60 |
| Protein | directed | 1870 | 4470 | 2.39 |
| Co-authorships | undirected | 23133 | 93439 | 8.08 |
| Movie actors | undirected | $7 \times 10^{5}$ | $29 \times 10^{6}$ | 83.7 |

MiME.

## Degree distribution

$\square$ Degree distribution $p_{k}$, a probability distr. $p_{k}$ is the fraction of nodes that have degree exactly equal to $k$ (i.e., \# of nodes with that degree / $N$ )


MiME.


## Degree distribution

## $\square$ In real world (large) networks, degree distribution is typically heavy-tailed

nodes with high degree $=$ hubs



## Bipartite graphs

$\square$ Connections are available only between the subsets $\mathcal{V}_{1}$ and $\mathcal{V}_{2}$
$(i, j) \in \mathcal{E}$ if and only if $i \in \mathcal{V}_{1}$ and $j \in \mathcal{V}_{2}$, or $j \in \mathcal{V}_{1}$ and $i \in \mathcal{V}_{2}$


## Bipartite graph example



Tweets


## Projections

$\square$ For a bipartite graph $\mathcal{G}\left(\mathcal{V}_{1} \cup \mathcal{V}_{2}, \boldsymbol{\mathcal { E }}\right)$, the projection on $\mathcal{V}_{1}$ is the graph $\mathcal{G}_{1}\left(\mathcal{V}_{1}, \boldsymbol{\varepsilon}_{1}\right)$ where $(i, j) \in \boldsymbol{\mathcal { E }}_{1}$ if and only if $i$ and $j$ have a common neighbour $k$
i.e., a node $k \in \mathcal{V}_{2}$ such that $(i, k) \in \boldsymbol{\mathcal { E }}$ and $(k, j) \in \boldsymbol{\mathcal { E }}$


## Projections

$\square$ The two projections on $\mathcal{V}_{1}$ and $\mathcal{V}_{2}$ can be obtained by inspecting the squared adjacency matrix $A^{2}$


## Projection example


\#climateaction tweets before Greta Thunberg

## Projection example


\#climateaction tweets after Greta Thunberg

## Meaning of projections

$\square$ Bipartite graphs are useful to represents memberships/relationships, e.g., groups $\left(\mathcal{V}_{1}\right)$ to which people $\left(\mathcal{V}_{2}\right)$ belong
examples: actors/movies, students/classes, authors/conferences
from a mathematical viewpoint being part of the same group can be interpreted in both ways, e.g., "actors in the same movie" or "movies sharing the same actor"

## Tri-partite graphs



## Signed graphs

$\square$ Edges can have signed values positive if there is an agreement between nodes negative if there's a disagreement

$\square$ This is typical of correlation networks

## Signed graph example

A personality network (Costantini et al, 2015)


MiME.

## Signed graph example (cont’d)

An fMRI adjacency matrix
(fMRI = functional magnetic resonance imaging)


## Connectivity

$\square$ Connected graph (undirected)
for all couples $(i, j)$ there exists a path connecting them
if disconnected, we count the \# of connected components (e.g., use BFS and iterate)
$\square$ Giant component (the biggest one)
$\square$ Isolates (the other ones)


$$
\boldsymbol{A}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{lll} 
& {\left[\begin{array}{lll} 
&
\end{array}\right]}
\end{array}\right.
$$

## Connectivity

## $\square$ A bridge is a link between two connected components

its removal would make the network disconnected


## Connectivity in directed nets

For directed networks we distinguish between
$\square$ Strongly connected components
where $i \rightarrow j$ and $j \rightarrow i$ for all choices of $(i, j)$ in the component

- Weakly connected components
connected in the undirected sense (i.e., disregard link directions)


## Condensation graph

$\square$ Strong connectivity induces a partition in disjoint strongly connected sets $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{\mathrm{k}}$
$\square$ By reinterpreting the sets as nodes we obtain a condensation graph $\boldsymbol{\mathcal { G }}^{*}$ where $i \rightarrow j$ is an edge if a connection exists between sets $\boldsymbol{\nu}_{i} \rightarrow \boldsymbol{V}_{j}$


## Properties of $\boldsymbol{G}^{*}$

- $\mathcal{G}^{*}$ does not contain cycles
otherwise the sets in the cycle would be strongly connected
$\square \boldsymbol{G}^{*}$ has at least one root and one leaf
and every node in the graph can be reached from one of the roots
$\square \boldsymbol{G}^{*}$ allows a particular reordering
where node $n_{i}$ does not reach any of the nodes $n_{j}$ with $j<1$
procedure: identify a root $\mathrm{n}_{1}$ and remove it from the network, then identify a new root; cycle until all nodes have
 been selected


## Condensation graph

$\square$ The condensation graph ordering induces a block-lowertriangular matrix structure on the adjacency matrix


## Readings

$\square$ A.L. Barabási, Network science
http://barabasi.com/networksciencebook
Ch. 2 "Graph theory"

