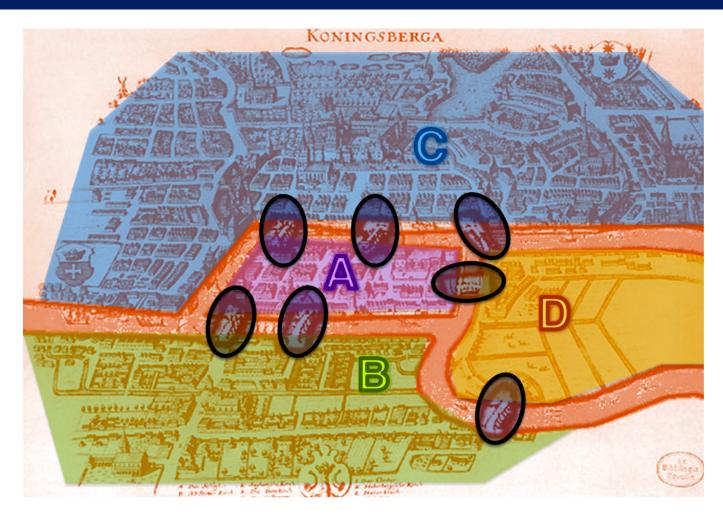
Network Science

#2 Graphs

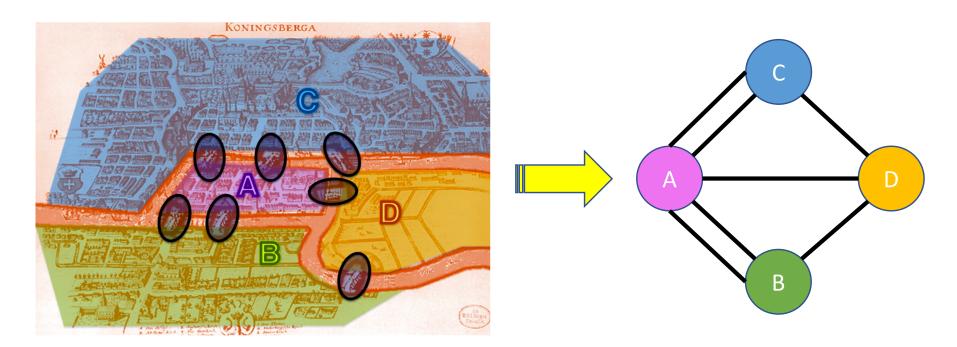
© 2020 T. Erseghe

Euler & the 7 bridges of Königsberg (1736)



How to walk through the city by crossing each bridge only once?

Networks as graphs



Graph G (𝒱,𝔅) □ Vertices (set 𝒱) : nodes, users, elements □ Edges (set 𝔅): links, arcs, hops, connections

MIME.

- "Network, nodes, links" = technology
- Graph, vertices, edges" = mathematics
- Design choices for what nodes and links are
 - graph structure can be a given
 - or it can be the focus of the model itself

Directed versus undirected

- A connection relationship can have a privileged direction or can be mutual
 - Either a directed or an undirected link

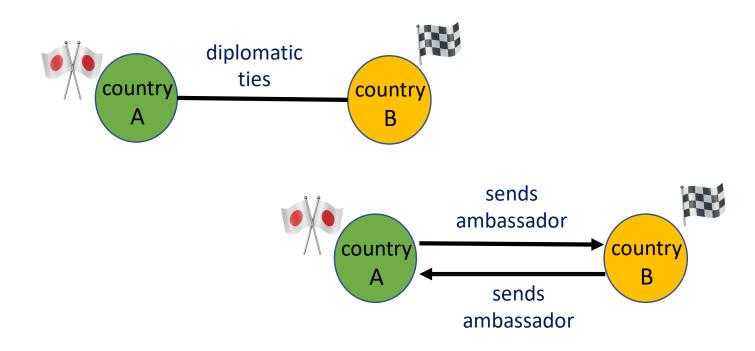
- If the network has only (un)directed links, it is also called itself (un)directed network
 - Certain networks can have both types

Some examples

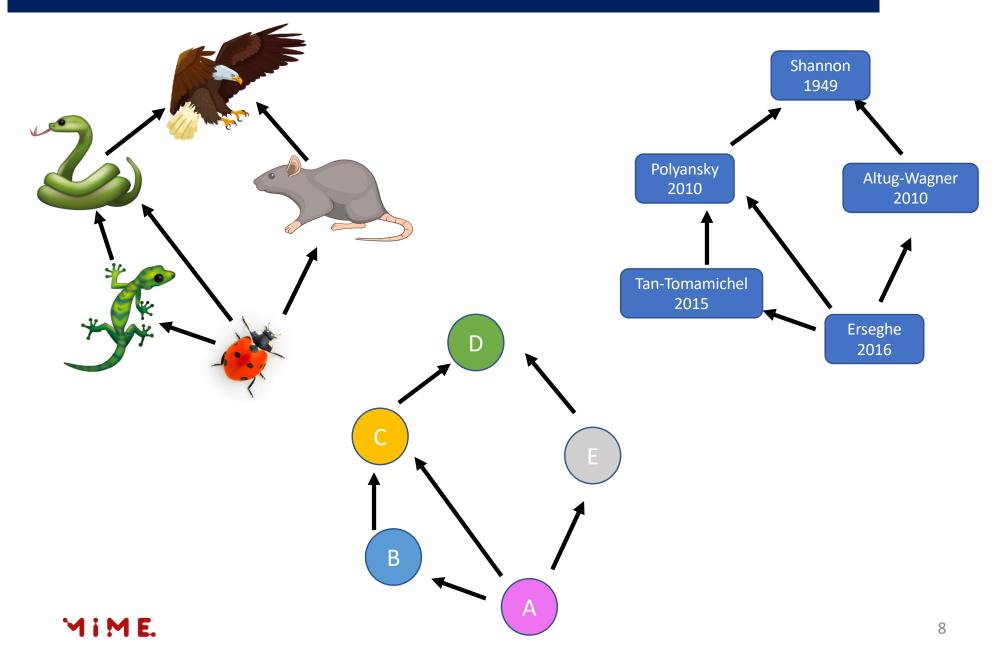
network	nodes and links	type
the Internet	Hosts and connections	undirected
the web	Webpages and links	directed
electrical grid	Power stations and cables	undirected
social network	Users and friendship	undirected
citation network	Papers and references	directed
movie network	novie network Actors and co-starring	
metabolism	Compounds and reactions	directed
protein network	rotein network Proteins and bindings	
genealogy People and parenthood		directed

Directed versus undirected

❑ At first glance undirected → directed by duplicating links, but not necessarily quite the same though



Generality of representation



Useful terms

a sequence of interconnected nodes (meaning each pair of nodes adjacent in the sequence are connected by a link)

of links involved in the path (if the path involves *n* nodes then the path link is *n*-1)

- Shortest path (between any two nodes) the path with the minimum length, which is called the distance
 - Diameter (of the network) the highest distance in the network

MIME.

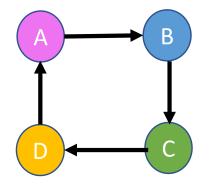
Useful terms

Algorithms available to compute distances: Dijkstra, Bellman-Ford, BFS

Average path length average distance between all nodes pairs (apply an algorithm to all node couples, and take the average)

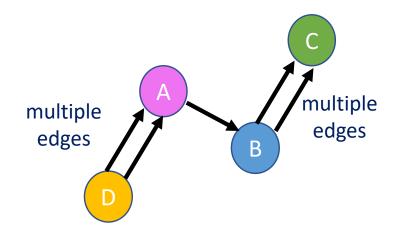
Cycle

path where starting and ending nodes coincide



Multi-graphs

Multi-graphs (or pseudo-graphs) Some network representations require multiple links (e.g., number of citations from one author to another)

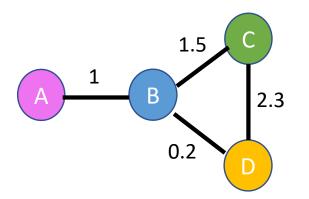


Weighted graph

Weighted graph

Sometimes a weight w_{ij} is associated to a link $(i,j) \in \mathcal{E}$, e.g., to underline that the links are not identical (strong/weak relationships)

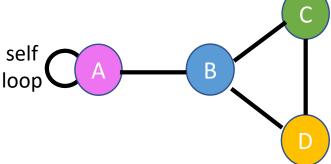
Can be seen as a generalization of multi-graphs (weight = # of links)



Self-interactions

□ In many networks nodes do not interact with themselves if $j \in \mathcal{V}$ then $(j,j) \notin \mathcal{E}$

To account for self-interactions, we add loops to represent them



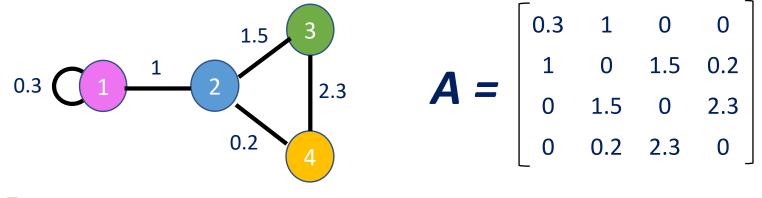
Adjacency matrix

An adjacency matrix $A = [a_{ij}]$ associated to graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ has

entries $a_{ij} = 0$ for $(i,j) \notin \mathcal{E}$ (not a connection)

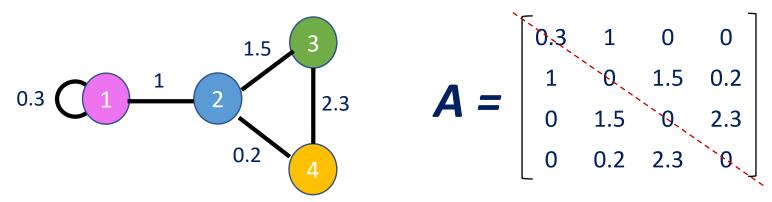
if nodes *i* and *j* are connected then $a_{ij} \neq 0$

in plain graphs $a_{ij} = 1$ for $(i,j) \in \mathcal{E}$



Symmetries

Undirected graph = symmetric matrix



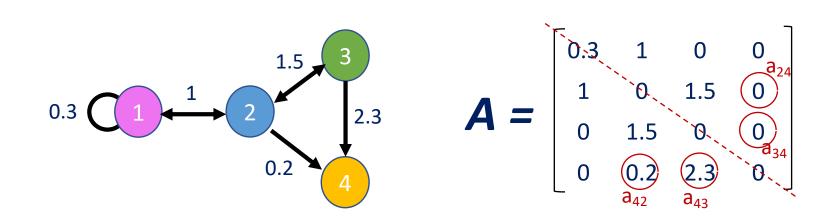
Directed graph = asymmetric matrix



Convention

\Box The weight a_{ij} is associated to

- *i* th row
- *j* th column
- directed edge $j \rightarrow i$ starting from node j and leading to node i



Degree

The degree k_i of node i in an undirected networks is the # of links i has to other nodes, or the # of nodes i is linked to
k₁ = 1

- □ The # of nodes is $N = |\mathcal{V}|$ □ The # of edges is $L = |\mathcal{E}| = \frac{1}{2} \sum_{i} k_i$
- The average degree is $\langle k \rangle = \sum_{i} k_i / N = 2L / N$

MIME

 $k_3 = 2$

 $k_4 = 2$

< k > = 2

Degree

For directed networks we distinguish between

in-degree $k_i^{in} = \#$ of entering links out-degree $k_i^{out} = \#$ of exiting links total degree $k_i = k_i^{in} + k_i^{out}$

(undirected: $k_i^{in} = k_i^{out}$ due to the symmetry)

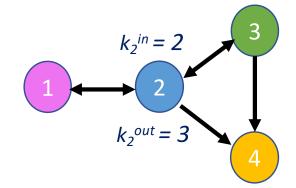
The # of links is $L = \sum_{i} k_{i}^{in} = \sum_{i} k_{i}^{out}$ (no need for factor $\frac{1}{2}$) ' The average # of links is <k> = L / N

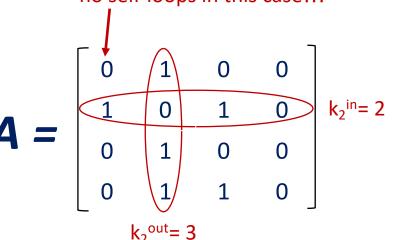
 $k_{2}^{in} = 2$

 $k_2^{out} = .3$

Adjacency matrix & degree

The in (out) degree can be obtained by summing the adjacency matrix over no self-loops in this case!!!





A few useful linear algebra expressions

$$k^{out} = \mathbf{A} \cdot \mathbf{1} \quad \mathbf{k}^{out} = \mathbf{A}^{\top} \cdot \mathbf{1} = (\mathbf{1}^{\top} \cdot \mathbf{A})^{\top}$$

MIME

Real networks are sparse

The adjacency matrix is typically sparse

good for tractability !

A =

MIME.

protein interaction network

Real networks are sparse

Complete graphs: the maximum # of links out of N nodes is L_{max} = ½N(N-1) undirected N(N-1) directed

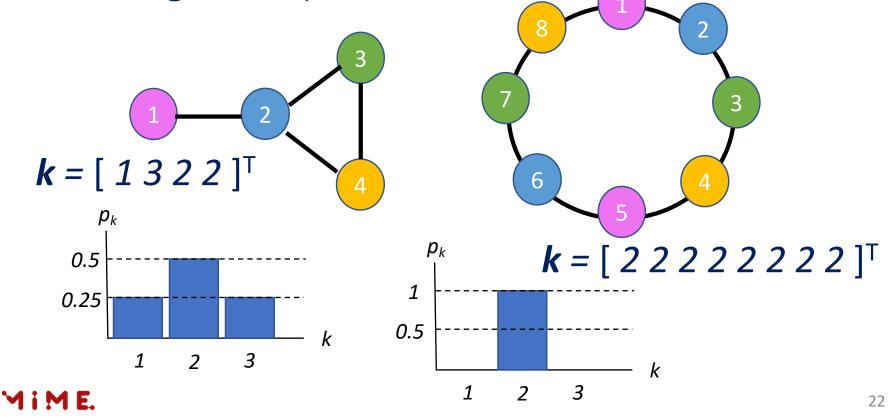
The maximum average degree is $\langle k \rangle_{max} = N-1 = 2 L_{max}/N$ undirected L_{max}/N directed

□ In real networks $L \ll L_{max}$ and $<k> \ll N-1$

	network	type	Ν	L	<k></k>			
	www	directed	3.2 x 10 ⁵	1.5 x 10 ⁶	4.60			
	Protein	directed	1870	4470	2.39			
	Co-authorships	undirected	23133	93439	8.08			
	Movie actors	undirected	7 x 10 ⁵	29 x 10 ⁶	83.7			
1 1	1 i M E.							

Degree distribution

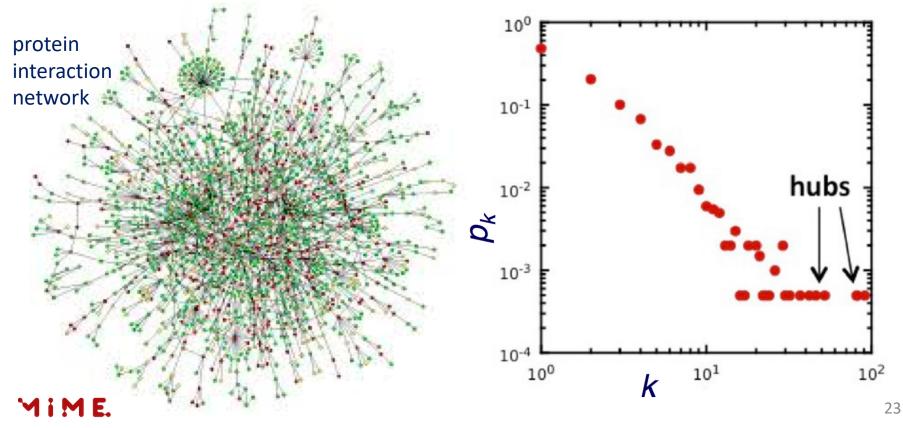
Degree distribution p_k , a probability distr. p_k is the fraction of nodes that have degree exactly equal to k (i.e., # of nodes with that degree / N)



Degree distribution

In real world (large) networks, degree distribution is typically heavy-tailed

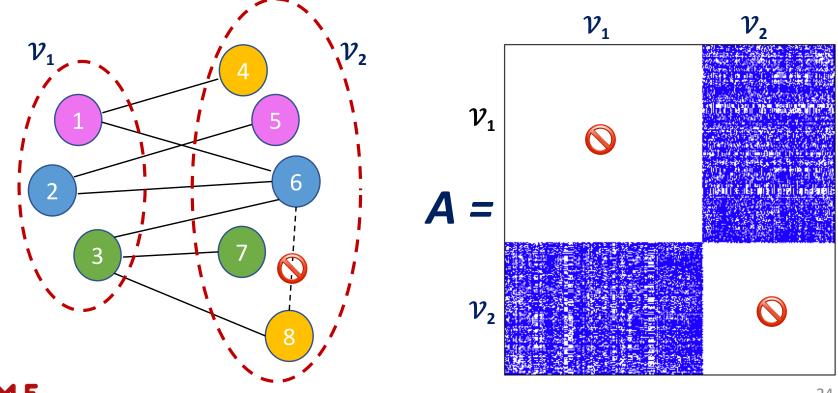
nodes with high degree = hubs



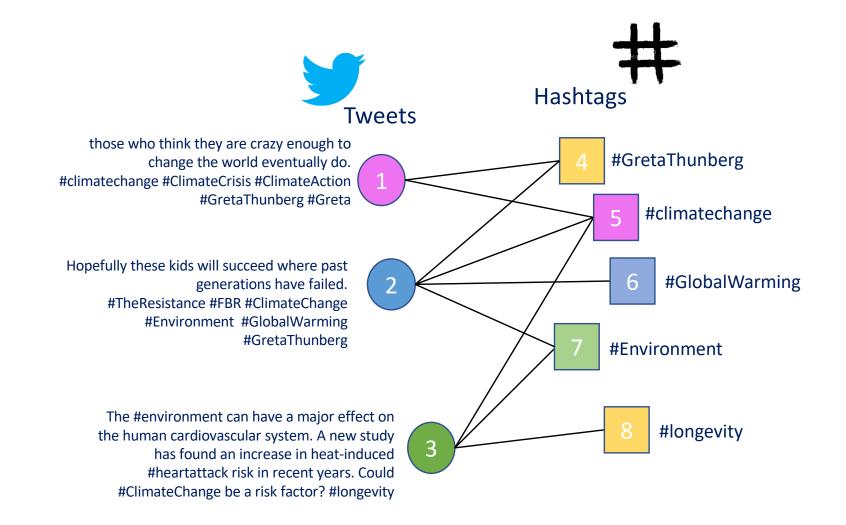
Bipartite graphs

Connections are available only between the subsets V₁ and V₂

 $(i,j) \in \mathcal{E}$ if and only if $i \in \mathcal{V}_1$ and $j \in \mathcal{V}_2$, or $j \in \mathcal{V}_1$ and $i \in \mathcal{V}_2$



Bipartite graph example

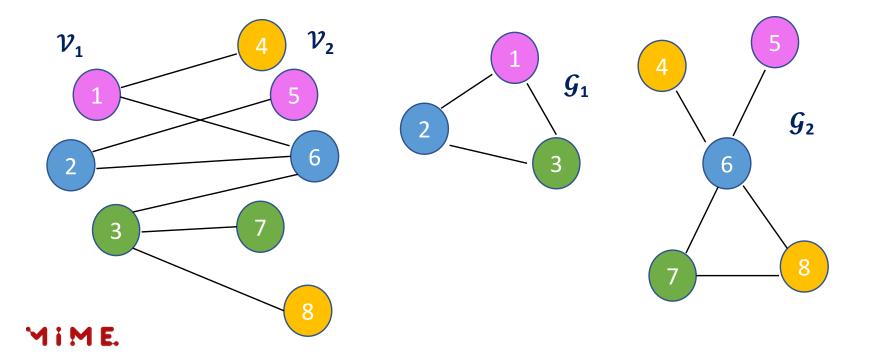


MIME.

Projections

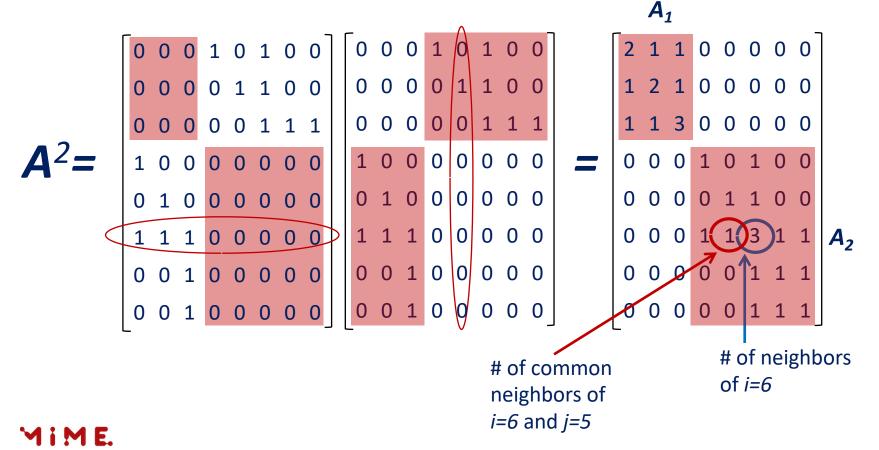
For a bipartite graph $\mathcal{G}(\mathcal{V}_1 \cup \mathcal{V}_2, \mathcal{E})$, the projection on \mathcal{V}_1 is the graph $\mathcal{G}_1(\mathcal{V}_1, \mathcal{E}_1)$ where $(i, j) \in \mathcal{E}_1$ if and only if *i* and *j* have a common neighbour *k*

i.e., a node $k \in \mathcal{V}_2$ such that $(i,k) \in \mathcal{E}$ and $(k,j) \in \mathcal{E}$



Projections

The two projections on \mathcal{V}_1 and \mathcal{V}_2 can be obtained by inspecting the squared adjacency matrix A^2



Projection example

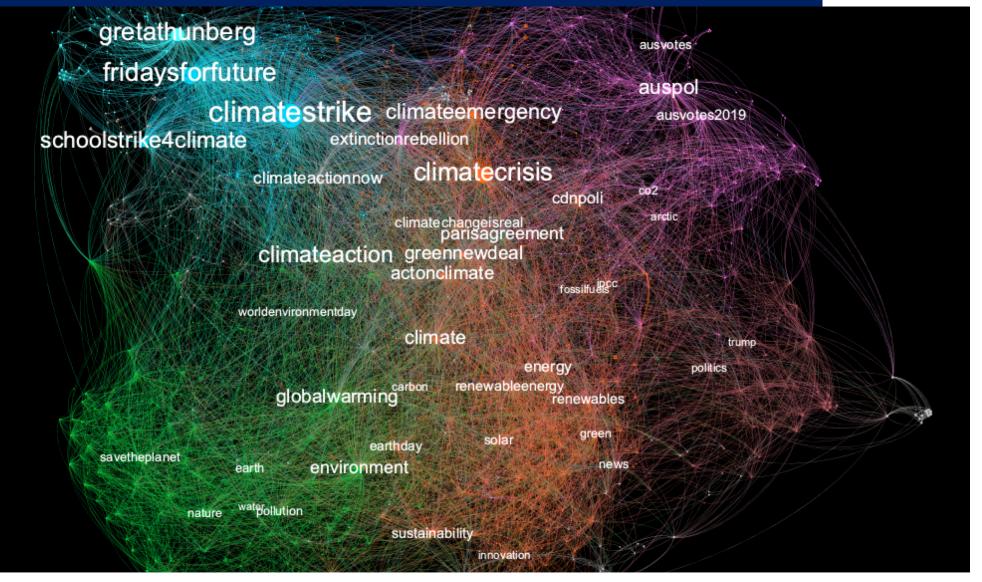


globalwarming

#climateaction tweets before Greta Thunberg

MIME.

Projection example



#climateaction tweets after Greta Thunberg

MIME.

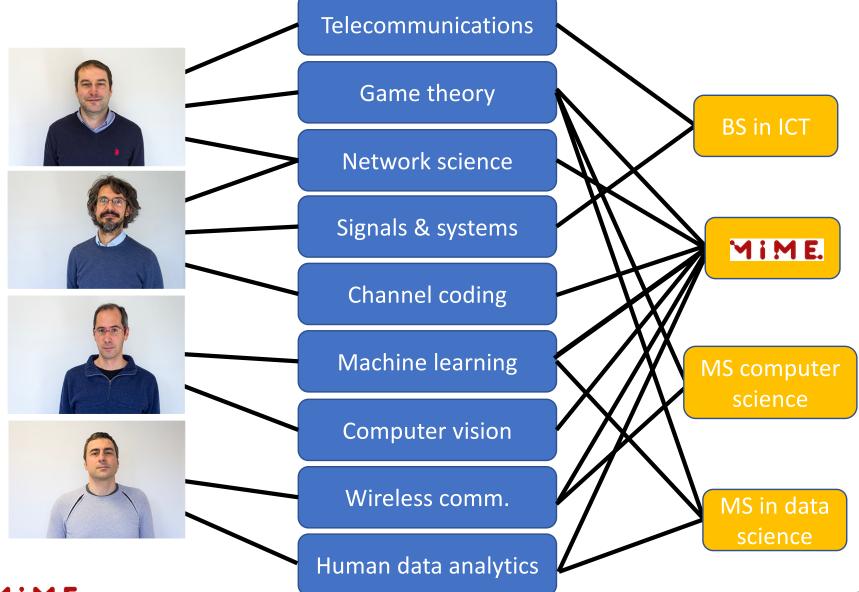
Meaning of projections

Bipartite graphs are useful to represents memberships/relationships, e.g., groups (V₁) to which people (V₂) belong

examples: actors/movies, students/classes, authors/conferences

from a mathematical viewpoint being part of the same group can be interpreted in both ways, e.g., "actors in the same movie" or "movies sharing the same actor"

Tri-partite graphs



MIME.

Signed graphs

Edges can have signed values

positive if there is an agreement between nodes negative if there's a disagreement (F)

Е

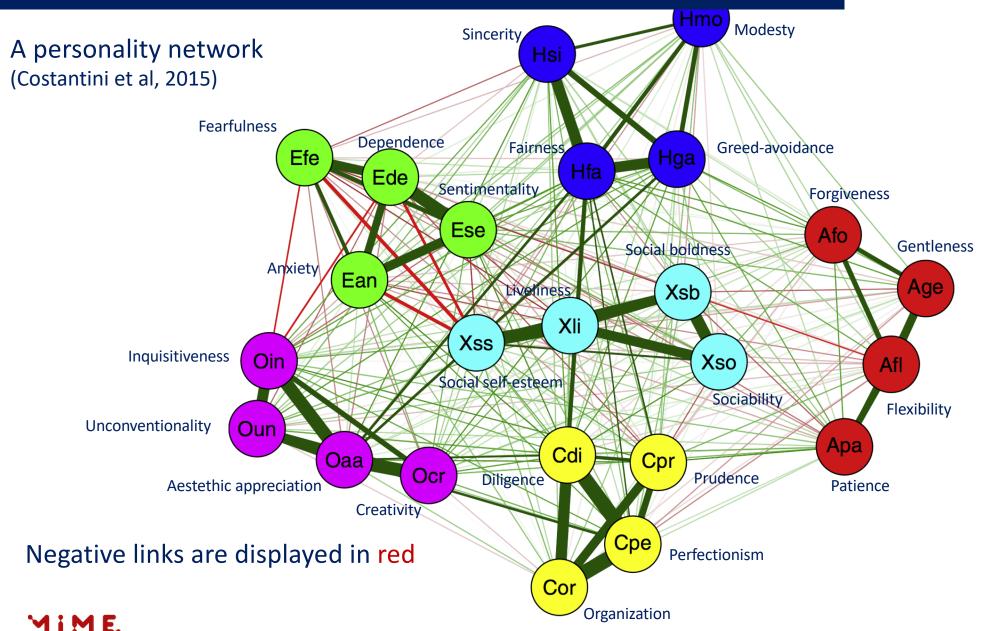
0.3

D

В

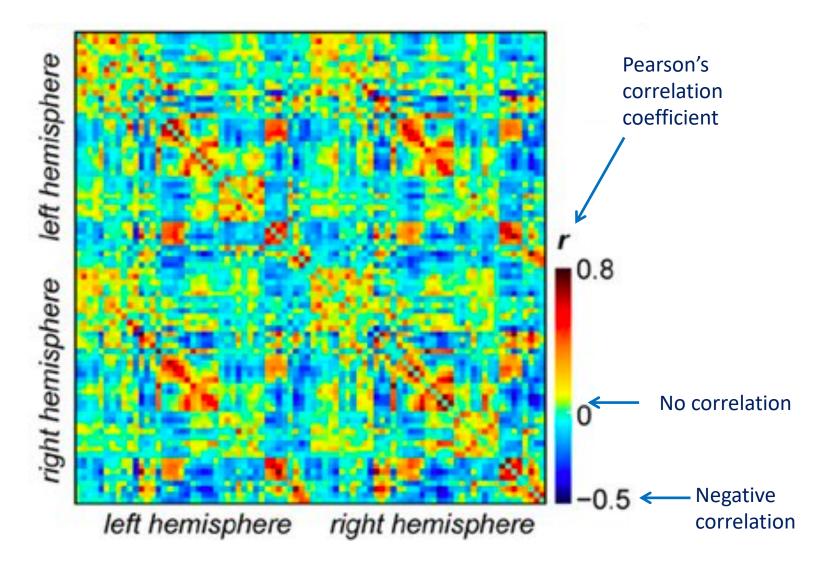
□ This is typical of correlation networks

Signed graph example



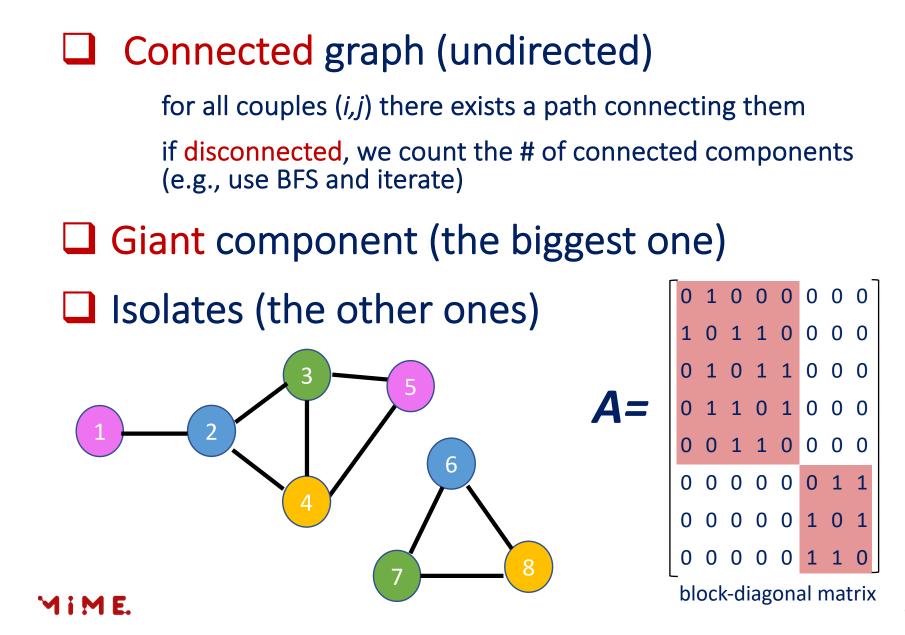
Signed graph example (cont'd)

An fMRI adjacency matrix (fMRI = functional magnetic resonance imaging)



MIME.

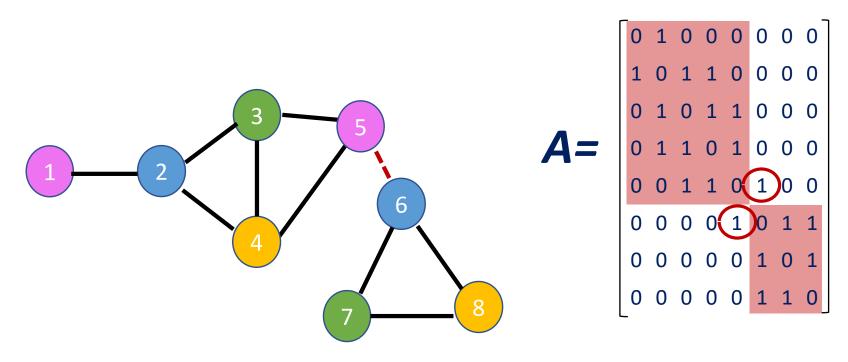
Connectivity



Connectivity

A bridge is a link between two connected components

its removal would make the network disconnected



Connectivity in directed nets

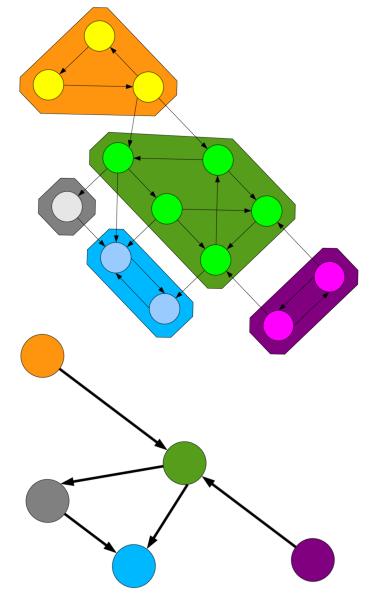
For directed networks we distinguish between

- Strongly connected components
 - where $i \rightarrow j$ and $j \rightarrow i$ for all choices of (i, j) in the component
- Weakly connected components

connected in the undirected sense (i.e., disregard link directions)

Condensation graph

- Strong connectivity induces a partition in disjoint strongly connected sets V₁, V₂, ..., V_K
- By reinterpreting the sets as nodes we obtain a condensation graph G^* where $i \rightarrow j$ is an edge if a connection exists between sets $\mathcal{V}_i \rightarrow \mathcal{V}_j$



Properties of G^*

$\Box \quad \mathcal{G}^* \text{ does not contain cycles}$

otherwise the sets in the cycle would be strongly connected

G* has at least one root and one leaf

and every node in the graph can be reached from one of the roots

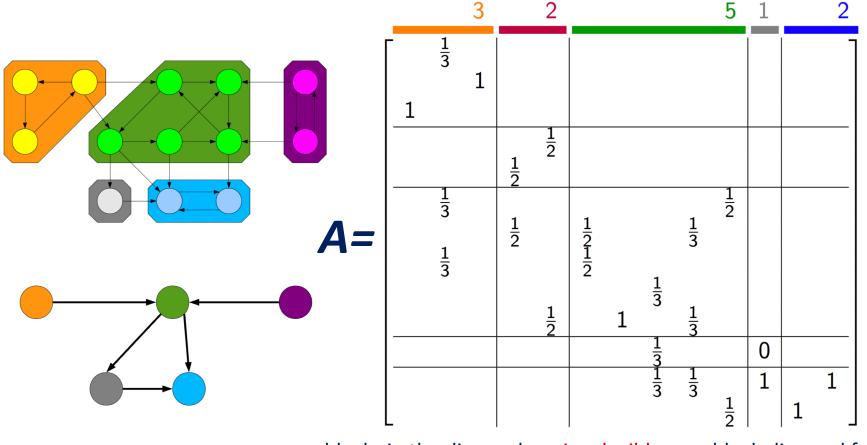
G* allows a particular reordering

where node n_i does not reach any of the nodes n_j with j < l

procedure: identify a root n_1 and remove it from the network, then identify a new root; cycle until all nodes have been selected

Condensation graph

The condensation graph ordering induces a block-lowertriangular matrix structure on the adjacency matrix



blocks in the diagonal are irreducible = no block-diagonal form !

MIME.

A.L. Barabási, Network science

http://barabasi.com/networksciencebook Ch.2 "Graph theory"